Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho góc α có điểm biểu diễn nằm ở góc phần tư thứ nhất của đường tròn lượng giác, kết quả nào sau đây đúng?
Cho số đo góc (Ou,Ov)=25∘+k360∘,(k∈Z). Với giá trị nào của k thì (Ou,Ov)=−1055∘?
Tập giá trị của hàm số y=sin2x là
Hàm số y=cosx nghịch biến trên khoảng nào dưới đây?
Chu kì của hàm số y=2sinxcosx là
Dãy số nào sau đây là cấp số cộng?
Cho cấp số cộng (un) có số hạng đầu u1=2 và công sai d=5. Giá trị của u4 bằng
Cho cấp số nhân (un) có u1=2 và công bội q=−3. Tổng 4 số hạng đầu của cấp số nhân (un) bằng
Cho 47π<α<2π, kết quả nào sau đây đúng?
Phương trình 3sin(2x+6π)−cos(2x+6π)=1 tương đương với phương trình nào sau đây?
Tập nghiệm S của phương trình cosx.sin(2x−3π)=0 là
Trong các dãy số (un) với số hạng tổng quát un dưới đây, dãy nào là dãy số bị chặn dưới?
Cho biết cos2α=−41 và π<α<23π.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) sinα<0,cosα<0. |
|
b) sinα=410. |
|
c) cosα=46. |
|
d) cotα=515. |
|
Cho phương trình lượng giác tan(2x−15∘)=1 (*).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình (*) có nghiệm x=30∘+k90∘,(k∈Z). |
|
b) Phương trình có nghiệm âm lớn nhất bằng −30∘. |
|
c) Tổng các nghiệm của phương trình trong khoảng (−180∘;90∘) bằng 180∘. |
|
d) Trong khoảng (−180∘;90∘) phương trình có nghiệm lớn nhất bằng 60∘. |
|
Giá của một chiếc xe ô tô lúc mới mua là 680 triệu đồng. Cứ sau mỗi năm sử dụng, giá của chiếc xe ô tô giảm 50 triệu đồng. Gọi un là giá của chiếc ô tô trong năm thứ n sử dụng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) u2=630. |
|
b) Dãy số (un) là cấp số cộng với công sai d=50. |
|
c) Giá của chiếc ô tô sau 3 năm sử dụng lớn hơn 500 triệu đồng. |
|
d) Sau ít nhất 8 năm sử dụng thì giá của chiếc ô tô nhỏ hơn một nửa giá trị ban đầu của nó. |
|
Cho hai biểu thức A=cos(nα) và B=sin(nβ) với n∈N∗.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Với n=2 ta có A=1−2cos2α. |
|
b) Với n=3 ta có B=4sinβ−3sin3β. |
|
c) Với n∈N∗ ta có A2=21+cos(2nα). |
|
d) Với n∈N∗ ta có AB=21[−sinn(α−β)+sinn(β+α)]. |
|
Trong một thí nghiệm, một viên bi sắt được gắn vào một đầu lò xo đàn hồi, đầu còn lại được cố định vào một thanh treo ngang. Sau khi viên bi được kéo xuống và thả ra, nó bắt đầu di chuyển lên xuống. Khi đó, chiều cao h cm của bi so với mặt đất theo thời gian t giây được cho bởi công thức: h=100−30cos20t. Tính thời điểm đầu tiên mà bi sắt đạt chiều cao cao nhất kể từ khi nó được thả ra (làm tròn kết quả đến hàng phần trăm).
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời:
Sinh nhật bạn của An vào ngày 1 tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo 1000 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 1000 đồng. Đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Trả lời:
Tìm số nguyên m nhỏ nhất để dãy số (un) với un=n+1mn+1 là dãy số tăng.
Trả lời:
Gọi n là số nghiệm của phương trình sin(2x+30∘)=23 trên khoảng (−180∘;180∘). Tìm n.
Trả lời:
Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2025 được cho bởi một hàm số y=4sin178π(t−60)+10, với t∈Z và 60<t≤365. Vào ngày thứ bao nhiêu trong năm đó thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Trả lời: