Giáp Thanh Hải

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Giáp Thanh Hải
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)
  1.  

    20:22
  2. a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:

    • x - 2 = 0 hoặc 4 - 3x = 0
    • x = 2 hoặc x = 4/3

    Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.

    b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:

    • (x-2)(x+2) = 0
    • x = 2 hoặc x = -2

    Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.

    c) Để tìm nghiệm của đa thức x^2 + 7, ta không thể giải phương trình x^2 + 7 = 0 vì không có số nào bình phương bằng 7. Vì vậy, đa thức này không có nghiệm trong tập số thực.

    d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:

    • x = 0 hoặc x = -5

    Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.

    e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:

    • x + 6 = 0 hoặc x - 1 = 0
    • x = -6 hoặc x = 1

    Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.

    f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.

    h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:

    • Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9
    • x1 = (-b + Δ) / 2a = (-11 + 3) / 14 = -4/7
    • x2 = (-b - Δ) / 2a = (-11 - 3) / 14 = -7/2

    Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.

    20:22  
  1. a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:

    • x - 2 = 0 hoặc 4 - 3x = 0
    • x = 2 hoặc x = 4/3

    Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.

    b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:

    • (x-2)(x+2) = 0
    • x = 2 hoặc x = -2

    Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.

    c) Để tìm nghiệm của đa thức x^2 + 7, ta không thể giải phương trình x^2 + 7 = 0 vì không có số nào bình phương bằng 7. Vì vậy, đa thức này không có nghiệm trong tập số thực.

    d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:

    • x = 0 hoặc x = -5

    Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.

    e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:

    • x + 6 = 0 hoặc x - 1 = 0
    • x = -6 hoặc x = 1

    Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.

    f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.

    h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:

    • Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9
    • x1 = (-b + Δ) / 2a = (-11 + 3) / 14 = -4/7
    • x2 = (-b - Δ) / 2a = (-11 - 3) / 14 = -7/2

    Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.

     

    tham khảo

    20:22
  2.  
  • Diện tích tam giác ABM là 1/2 * AB * AM = 1/2 * AB * 1/3 AB = 1/6 * AB^2
  • Diện tích tam giác BCN là 1/2 * BC * BN = 1/2 * BC * 2/3 BC = 1/3 * BC^2
  • Diện tích tam giác CDP là 1/2 * CD * CP = 1/2 * CD * PD = 1/6 * CD^2
  • Diện tích tam giác DAQ là 1/2 * DA * DQ = 1/2 * DA * 1/3 DA = 1/6 * DA^2

Vậy tổng diện tích của 4 tam giác trên là:

1/6 * AB^2 + 1/3 * BC^2 + 1/6 * CD^2 + 1/6 * DA^2

 

  • Đường chéo AC chia hình chữ nhật ABCD thành hai tam giác có diện tích lần lượt là 1/2 * AC * AB/2 = 1/4 * AC * AB và 1/2 * AC * CD/2 = 1/4 * AC * CD
  • Đường chéo BD cũng chia hình chữ nhật ABCD thành hai tam giác có diện tích lần lượt là 1/2 * BD * BC/2 = 1/4 * BD * BC và 1/2 * BD * DA/2 = 1/4 * BD * DA

Do đó, ta có:

  • Diện tích tam giác EFG là 1/2 * EF * EG = 1/2 * (AC/2) * (BD/2) = 1/8 * AC * BD

Vậy diện tích hình MNPQ bằng:

2 * diện tích tam giác EFG = 2 * 1/8 * AC * BD = 1/4 * AB * CD

Từ đó, ta suy ra diện tích hình MNPQ là 1/4 diện tích hình chữ nhật ABCD:

Diện tích hình MNPQ = 1/4 * 324 cm^2 = 81 cm^2

 

  1.  

    1. a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:

      • x - 2 = 0 hoặc 4 - 3x = 0
      • x = 2 hoặc x = 4/3

      Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.

      b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:

      • (x-2)(x+2) = 0
      • x = 2 hoặc x = -2

      Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.

      c) Để tìm nghiệm của đa thức x^2 + 7, ta không thể giải phương trình x^2 + 7 = 0 vì không có số nào bình phương bằng 7. Vì vậy, đa thức này không có nghiệm trong tập số thực.

      d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:

      • x = 0 hoặc x = -5

      Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.

      e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:

      • x + 6 = 0 hoặc x - 1 = 0
      • x = -6 hoặc x = 1

      Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.

      f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.

      h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:

      • Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9
      • x1 = (-b + Δ) / 2a = (-11 + 3) / 14 = -4/7
      • x2 = (-b - Δ) / 2a = (-11 - 3) / 14 = -7/2

      Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.

       

      (tham khảo

      20:22
    2.  

     

Để tính vận tốc lượt đi và về của xe, ta cần biết thời gian và quãng đường mà xe đi được trong mỗi hành trình.

  • Trong hành trình đi từ A đến B, xe đi được quãng đường d = 105 km trong thời gian t1 = 2,5 giờ. Vận tốc trung bình của xe lúc này là:

v1 = d / t1 = 105 km / 2,5 h = 42 km/h.

  • Trong hành trình về từ B đến A, xe đi được cùng một quãng đường d = 105 km nhưng trong thời gian t2 = 3 giờ. Vận tốc trung bình của xe lúc này là:

v2 = d / t2 = 105 km / 3 h = 35 km/h.

Vậy, vận tốc lượt đi của xe là 42 km/h và vận tốc về của xe là 35 km/h

Ta có thể viết lại biểu thức trên dưới dạng:
(6 x 8 -😎 + (8 x 10 -😎 + (10 x 12 -😎 + … + (98 x 100 -😎
= 8 x (6 + 8 + 10 + … + 98) - 8 x 49
= 8 x (6 + 98) x 47 - 8 x 49
= 8 x 104 x 47 - 8 x 49
= 8 x (104 x 47 - 49)
= 8 x 4863
= 38,904

Vậy kết quả của biểu thức là 38,904.

 

  1. a) Ta có:

    • Diện tích tam giác ABC là S = 1/2 * AB * AC = 1/2 * 3cm * 4cm = 6cm^2.
    • Vì AD là đường cao của tam giác ABC nên diện tích tam giác ABC cũng bằng 1/2 * AB * CD, tức là: S = 1/2 * AB * CD = 3CD.
      Từ đó suy ra: CD = 2cm.

    b) Gọi E là hình chiếu vuông góc của D trên BC. Ta có:

    • Tam giác ADE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

    • Tam giác BDE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AC.
      Do đó, ta có:

    • AI/AB = DE/BC (vì tam giác ADE và tam giác ABC đồng dạng)

    • DE = AD - AE = AD - CD = AD - 2 (vì tam giác ADE vuông tại E và CD là hình chiếu của AD trên BC)

    • BC = AB + AC = 3 + 4 = 7
      Từ đó suy ra: AI/AB = (AD - 2)/7

    Vậy, ta có: AI*AB = (AD - 2)AB/7 = ADAB/7 - 2AB/7 = AD^2/3 - 2/7.

    c) Gọi F là hình chiếu vuông góc của D trên AB. Ta có:

    • Tam giác ADF và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

    • Tam giác CDF và tam giác ABC đồng dạng với tỉ số đồng dạng CD/AC.
      Do đó, ta có:

    • AI/AB = DF/AF (vì tam giác ADF và tam giác ABC đồng dạng)

    • AK/AC = CF/AF (vì tam giác CDF và tam giác ABC đồng dạng)

    • DF + CF = CD = 2

    • AF = AB - BF = AB - AK = 3 - AK (vì BF là hình chiếu của B trên AC và AK là hình chiếu của D trên AC)

    Từ đó suy ra: AI/AB = DF/(DF + CF) = DF/2 = (AD^2 - AF^2)/(2AD^2) = (AD^2 - (AB - AK)^2)/(2AD^2) = (2AK*AC - AK^2)/(2AD^2) = AK/AD - AK^2/(2AD^2).

    Từ b) và c), ta có: AIAB = AD^2/3 - 2/7 = AKAC*(1 - AK^2/(2AD^2)).

    d) Gọi H là hình chiếu vuông góc của I trên BC. Ta có:

    • Tam giác ADH và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

    • Tam giác IDH và tam giác ABC đồng dạng với tỉ số đồng dạng AI/AC.
      Do đó, ta có:

    • ID/AI = DH/AB (vì tam giác IDH và tam giác ABC đồng dạng)

    • DH = CD - CH = 2 - CI (vì tam giác ADH vuông tại H và CI là hình chiếu của I trên BC)

    • AB = 3, AC = 4, BC = 7

    Từ đó suy ra: ID/AI = (CD - CH)/AB = (2 - CI)/3.

    Do đó, ta có: ID/AI = (2 - CI)/3 = (2 - AK)/4 (vì AIAB = AKAC từ c))

    Từ đó suy ra: ID = (2AI - 3AK)/4.

    Vậy, ta có: ID/AI = (2AI - 3AK)/(4AI) = 1 - 3AK/(2AI) = 1 - DH

    18:22
  2.  
 

a sẽ sử dụng phương pháp chia để trị để giải quyết bài toán này. Ta bắt đầu bằng cách chia các vật thành hai nhóm có số lượng gần bằng nhau.

  • Nhóm 1: Các vật có khối lượng từ 1 đến 50 gam.
  • Nhóm 2: Các vật có khối lượng từ 51 đến 100 gam.

Để cân các vật trong nhóm 1, ta cần sử dụng một quả cân. Để cân các vật trong nhóm 2, ta cũng cần sử dụng một quả cân.

Vậy, ta cần ít nhất 2 quả cân để cân tất cả các vật có khối lượng là một số tự nhiên từ 1 gam đến 100 gam.

Để sắp xếp các phân số theo thứ tự tăng dần, ta cần chuyển chúng về cùng mẫu số. Ta có:

11/14 = 165/231
15/14 = 225/231
11/15 = 184/231
15/13 = 345/231

Vậy, thứ tự tăng dần của các phân số là: 11/14 < 11/15 < 15/14 < 15/13.

Gọi số tự nhiên đầu tiên trong dãy là x, ta có:

x + (x+1) + (x+2) = 1530

Simplifying the equation, we get:

3x + 3 = 1530

3x = 1527

x = 509

Vậy ba số tự nhiên liên tiếp cần tìm là 509, 510 và 511.