Đỗ Đăng Khôi
Giới thiệu về bản thân
a) cân tại nên .
Vì và là đường phân giác của nên , .
Do đó .
Suy ra cân tại .
b) Vì là giao điểm các đường phân giác và trong nên là giao điểm ba đường phân giác trong .
Do đó, cách đều ba cạnh và .
c) Ta có cân tại là đường phân giác của góc nên đồng thời là trung tuyến và đường cao của .
Vậy đường thẳng đi qua trung điểm của đoạn thẳng và vuông góc với nó.
d) Ta có (g.c.g)
(hai cạnh tương ứng).
e) Ta có , (1);
(2).
Lại có (tam giác cân tại ) (3).
Từ (1), (2) và (3) suy ra .
Vậy tam giác cân tại .
a) Xét và , có
(giả thiết);
chung;
(giả thiết).
Do đó (c.g.c)
(hai cạnh tương ứng).
b) Do và nên .
Mà (chứng minh trên)
; (hai góc tương ứng)
Mặt khác
Xét và có
(chứng minh trên);
(chứng minh trên);
(chứng minh trên)
Do đó (g.c.g).
c) Vi (chứng minh trên) nên (hai cạnh tương ứng).
Xét và có (chứng minh trên);
cạnh chung;
(giả thiết).
Do đó (c.c.c)
(hai góc tương ứng)
là tia phân giác của .
a) Xét và , có
(giả thiết);
chung;
(giả thiết).
Do đó (c.g.c)
(hai cạnh tương ứng).
b) Do và nên .
Mà (chứng minh trên)
; (hai góc tương ứng)
Mặt khác
Xét và có
(chứng minh trên);
(chứng minh trên);
(chứng minh trên)
Do đó (g.c.g).
c) Vi (chứng minh trên) nên (hai cạnh tương ứng).
Xét và có (chứng minh trên);
cạnh chung;
(giả thiết).
Do đó (c.c.c)
(hai góc tương ứng)
là tia phân giác của .
a) Xét và , có
(giả thiết);
chung;
(giả thiết).
Do đó (c.g.c)
(hai cạnh tương ứng).
b) Do và nên .
Mà (chứng minh trên)
; (hai góc tương ứng)
Mặt khác
Xét và có
(chứng minh trên);
(chứng minh trên);
(chứng minh trên)
Do đó (g.c.g).
c) Vi (chứng minh trên) nên (hai cạnh tương ứng).
Xét và có (chứng minh trên);
cạnh chung;
(giả thiết).
Do đó (c.c.c)
(hai góc tương ứng)
là tia phân giác của .
a) Xét và , có
(giả thiết);
chung;
(giả thiết).
Do đó (c.g.c)
(hai cạnh tương ứng).
b) Do và nên .
Mà (chứng minh trên)
; (hai góc tương ứng)
Mặt khác
Xét và có
(chứng minh trên);
(chứng minh trên);
(chứng minh trên)
Do đó (g.c.g).
c) Vi (chứng minh trên) nên (hai cạnh tương ứng).
Xét và có (chứng minh trên);
cạnh chung;
(giả thiết).
Do đó (c.c.c)
(hai góc tương ứng)
là tia phân giác của .
a) Xét và , có
(giả thiết);
chung;
(giả thiết).
Do đó (c.g.c)
(hai cạnh tương ứng).
b) Do và nên .
Mà (chứng minh trên)
; (hai góc tương ứng)
Mặt khác
Xét và có
(chứng minh trên);
(chứng minh trên);
(chứng minh trên)
Do đó (g.c.g).
c) Vi (chứng minh trên) nên (hai cạnh tương ứng).
Xét và có (chứng minh trên);
cạnh chung;
(giả thiết).
Do đó (c.c.c)
(hai góc tương ứng)
là tia phân giác của .
a) Xét và có
(giả thiết);
cạnh chung;
( là tia phân giác).
Vậy (cạnh huyền - góc nhọn).
b) (chứng minh trên)
(hai cạnh tương ứng).
Gọi là giao điểm của và .
Xét và , có
(chứng minh trên);
( là tia phân giác);
chung.
Do đó (c.g.c)
(hai góc tương ứng)
Mà nên .
Vậy .
Vì và là hai góc kề bù mà nên (1)
Ta có là phân giác của (2)
Từ (1) và (2) suy ra là tia phân giác của
(tính chất tia phân giác của một góc) (3)
Vì là phân giác của nên (tính chất tia phân giác của một góc) (4)
Từ (3) và suy ra .
Ta có thuộc phân giác của ;
; (tính chất tia phân giác của một góc).
Gọi là trung điểm của .
Xét và , có
( là trung trực của ),
(già thiết),
là cạnh chung.
Do đó (hai cạnh góc vuông)
(hai cạnh tương ứng).
Xét và , có
(giả thiết);
(chứng minh trên);
(chứng minh trên).
Do đó (cạnh huyền - cạnh góc vuông)
(hai cạnh tương ứng).
Ta có thuộc phân giác của ;
; (tính chất tia phân giác của một góc).
Gọi là trung điểm của .
Xét và , có
( là trung trực của ),
(già thiết),
là cạnh chung.
Do đó (hai cạnh góc vuông)
(hai cạnh tương ứng).
Xét và , có
(giả thiết);
(chứng minh trên);
(chứng minh trên).
Do đó (cạnh huyền - cạnh góc vuông)
(hai cạnh tương ứng).