Đỗ Thành Đạt
Giới thiệu về bản thân
a) Ta có:
- Góc B = 3 * góc C (theo điều kiện đề bài).
- Góc BAC + góc BCA + góc ABC = 180° (tổng các góc trong tam giác).
- Góc BAC + góc BCA + 3 * góc C = 180° (thay thế góc B bằng 3 lần góc C).
- Góc BAC + 4 * góc C = 180°.
Gọi x là góc C. Khi đó, góc BAC = 3x và góc BCA = x. Ta có:
3x + x + 4x = 180°,
8x = 180°,
x = 22.5°.
Vậy góc C = 22.5° và góc B = 3 * 22.5° = 67.5°.
Xét tam giác ABC và tam giác AEC:
- Góc AEC là góc phụ của góc BAC (do Ax là tia đối của AC).
- Góc AEC = góc C (do góc BAC = 3 * góc C).
Vậy góc AEC = góc C.
b) Ta cần chứng minh rằng Ay song song với BE.
Xét tam giác ABC:
- Góc B = 3 * góc C (đề bài).
- Góc BAC = 180° - (góc BCA + góc ABC) = 180° - (x + 3x) = 180° - 4x.
- Góc BAE = 180° - góc BAC = 180° - (180° - 4x) = 4x.
Xét tam giác AEB:
- Góc AEB = góc BAC = 180° - 4x (tính chất của tam giác đồng biến).
- Góc ABE = 180° - góc BAE - góc AEB = 180° - 4x - (180° - 4x) = 0°.
Vậy Ay song song với BE.