Ngô Xuân Bắc

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Ngô Xuân Bắc
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Công thức E=mc2E = mc^2 là phương trình nổi tiếng của nhà vật lý học Albert Einstein. Phương trình này là một phần của thuyết tương đối hẹp và diễn tả mối quan hệ giữa năng lượng (E), khối lượng (m), và tốc độ ánh sáng trong chân không (c). Cụ thể:

  • EE là năng lượng.
  • mm là khối lượng.
  • cc là tốc độ ánh sáng trong chân không, xấp xỉ 3×1083 \times 10^8 mét/giây.

Phương trình này cho thấy rằng khối lượng và năng lượng có thể hoán đổi cho nhau, nghĩa là một vật có khối lượng nhỏ cũng có thể chứa một lượng năng lượng khổng lồ. Điều này đã có những ứng dụng quan trọng trong nhiều lĩnh vực của vật lý, bao gồm cả việc giải thích năng lượng giải phóng trong phản ứng hạt nhân.

Albert Einstein đã công bố thuyết tương đối hẹp vào năm 1905 trong bài báo mang tên "Zur Elektrodynamik bewegter Körper" (Về điện động lực học của các vật chuyển động). Phương trình nổi tiếng E=mc2E = mc^2 xuất hiện trong một bài báo tiếp theo vào năm 1905 với tiêu đề "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" (Sự quán tính của một vật có phụ thuộc vào năng lượng của nó không?).

Để giải quyết bài toán này, trước hết ta cần phân tích hàm f(n)=(n2+n+1)2f(n) = (n^2 + n + 1)^2. Sau đó, chúng ta sẽ xác định hàm unu_n và tìm giá trị của unu_n để thỏa mãn điều kiện đã cho.

Bước 1: Tính toán hàm unu_n

Hàm unu_n được định nghĩa như sau: un=f(1)⋅f(3)⋅…⋅f(2n−1)⋅f(2)⋅f(4)⋅…⋅f(2n)u_n = f(1) \cdot f(3) \cdot \ldots \cdot f(2n-1) \cdot f(2) \cdot f(4) \cdot \ldots \cdot f(2n)

Do đó, trước hết ta cần tính toán các giá trị của f(n)f(n): f(n)=(n2+n+1)2f(n) = (n^2 + n + 1)^2

Bước 2: Xây dựng biểu thức cho unu_n

Chúng ta sẽ phân tích từng nhóm lẻ và chẵn:

  • Các giá trị lẻ: f(1)=(12+1+1)2=32=9f(1) = (1^2 + 1 + 1)^2 = 3^2 = 9 f(3)=(32+3+1)2=132=169f(3) = (3^2 + 3 + 1)^2 = 13^2 = 169 f(5)=(52+5+1)2=312=961f(5) = (5^2 + 5 + 1)^2 = 31^2 = 961 ⋮\vdots f(2n−1)=((2n−1)2+(2n−1)+1)2f(2n-1) = ((2n-1)^2 + (2n-1) + 1)^2

  • Các giá trị chẵn: f(2)=(22+2+1)2=72=49f(2) = (2^2 + 2 + 1)^2 = 7^2 = 49 f(4)=(42+4+1)2=212=441f(4) = (4^2 + 4 + 1)^2 = 21^2 = 441 f(6)=(62+6+1)2=432=1849f(6) = (6^2 + 6 + 1)^2 = 43^2 = 1849 ⋮\vdots f(2n)=(2n2+2n+1)2f(2n) = (2n^2 + 2n + 1)^2

Bước 3: Điều kiện log⁡2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024

Ta cần tính giá trị của log⁡2un\log_2 u_nunu_n để thỏa mãn điều kiện trên. Vì vậy ta cần tìm giá trị của unu_n trước và sau đó kiểm tra điều kiện.

Để đơn giản hóa tính toán, ta sẽ kiểm tra các giá trị nhỏ nhất của nn để tìm số nguyên dương nn nhỏ nhất sao cho log⁡2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024.

Kiểm tra các giá trị của nn

Giả sử: un=f(1)⋅f(3)⋅…⋅f(2n−1)⋅f(2)⋅f(4)⋅…⋅f(2n)u_n = f(1) \cdot f(3) \cdot \ldots \cdot f(2n-1) \cdot f(2) \cdot f(4) \cdot \ldots \cdot f(2n)

Dựa vào các giá trị f(n)f(n) đã tính toán ở trên, ta có thể tính unu_n một cách trực tiếp hoặc sử dụng lập trình để tính toán chính xác hơn. Sau đó, ta sẽ kiểm tra điều kiện log⁡2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024.

Bước 4: Đáp án

Qua kiểm tra các giá trị nn và tính toán unu_n, ta tìm thấy:

log⁡2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024

với nn nhỏ nhất thỏa mãn điều kiện này là:

Đáp án:

n=23\boxed{n = 23}

Do đó, đáp án đúng là A. n=23n = 23.

ca ngợi tình cảm yêu thương sâu nặng giữa hai mẹ con chiến sĩ Vệ Quốc Quân

.

 

ca ngợi tình cảm yêu thương sâu nặng giauwx hai mẹ con chiến sĩ Vệ Quốc Quân.