Ngô Xuân Bắc
Giới thiệu về bản thân
ok
ctrl+a
Công thức E=mc2E = mc^2 là phương trình nổi tiếng của nhà vật lý học Albert Einstein. Phương trình này là một phần của thuyết tương đối hẹp và diễn tả mối quan hệ giữa năng lượng (E), khối lượng (m), và tốc độ ánh sáng trong chân không (c). Cụ thể:
- EE là năng lượng.
- mm là khối lượng.
- cc là tốc độ ánh sáng trong chân không, xấp xỉ 3×1083 \times 10^8 mét/giây.
Phương trình này cho thấy rằng khối lượng và năng lượng có thể hoán đổi cho nhau, nghĩa là một vật có khối lượng nhỏ cũng có thể chứa một lượng năng lượng khổng lồ. Điều này đã có những ứng dụng quan trọng trong nhiều lĩnh vực của vật lý, bao gồm cả việc giải thích năng lượng giải phóng trong phản ứng hạt nhân.
Albert Einstein đã công bố thuyết tương đối hẹp vào năm 1905 trong bài báo mang tên "Zur Elektrodynamik bewegter Körper" (Về điện động lực học của các vật chuyển động). Phương trình nổi tiếng E=mc2E = mc^2 xuất hiện trong một bài báo tiếp theo vào năm 1905 với tiêu đề "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" (Sự quán tính của một vật có phụ thuộc vào năng lượng của nó không?).
Để giải quyết bài toán này, trước hết ta cần phân tích hàm f(n)=(n2+n+1)2f(n) = (n^2 + n + 1)^2. Sau đó, chúng ta sẽ xác định hàm unu_n và tìm giá trị của unu_n để thỏa mãn điều kiện đã cho.
Bước 1: Tính toán hàm unu_nHàm unu_n được định nghĩa như sau: un=f(1)⋅f(3)⋅…⋅f(2n−1)⋅f(2)⋅f(4)⋅…⋅f(2n)u_n = f(1) \cdot f(3) \cdot \ldots \cdot f(2n-1) \cdot f(2) \cdot f(4) \cdot \ldots \cdot f(2n)
Do đó, trước hết ta cần tính toán các giá trị của f(n)f(n): f(n)=(n2+n+1)2f(n) = (n^2 + n + 1)^2
Bước 2: Xây dựng biểu thức cho unu_nChúng ta sẽ phân tích từng nhóm lẻ và chẵn:
-
Các giá trị lẻ: f(1)=(12+1+1)2=32=9f(1) = (1^2 + 1 + 1)^2 = 3^2 = 9 f(3)=(32+3+1)2=132=169f(3) = (3^2 + 3 + 1)^2 = 13^2 = 169 f(5)=(52+5+1)2=312=961f(5) = (5^2 + 5 + 1)^2 = 31^2 = 961 ⋮\vdots f(2n−1)=((2n−1)2+(2n−1)+1)2f(2n-1) = ((2n-1)^2 + (2n-1) + 1)^2
-
Các giá trị chẵn: f(2)=(22+2+1)2=72=49f(2) = (2^2 + 2 + 1)^2 = 7^2 = 49 f(4)=(42+4+1)2=212=441f(4) = (4^2 + 4 + 1)^2 = 21^2 = 441 f(6)=(62+6+1)2=432=1849f(6) = (6^2 + 6 + 1)^2 = 43^2 = 1849 ⋮\vdots f(2n)=(2n2+2n+1)2f(2n) = (2n^2 + 2n + 1)^2
Ta cần tính giá trị của log2un\log_2 u_n và unu_n để thỏa mãn điều kiện trên. Vì vậy ta cần tìm giá trị của unu_n trước và sau đó kiểm tra điều kiện.
Để đơn giản hóa tính toán, ta sẽ kiểm tra các giá trị nhỏ nhất của nn để tìm số nguyên dương nn nhỏ nhất sao cho log2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024.
Kiểm tra các giá trị của nnGiả sử: un=f(1)⋅f(3)⋅…⋅f(2n−1)⋅f(2)⋅f(4)⋅…⋅f(2n)u_n = f(1) \cdot f(3) \cdot \ldots \cdot f(2n-1) \cdot f(2) \cdot f(4) \cdot \ldots \cdot f(2n)
Dựa vào các giá trị f(n)f(n) đã tính toán ở trên, ta có thể tính unu_n một cách trực tiếp hoặc sử dụng lập trình để tính toán chính xác hơn. Sau đó, ta sẽ kiểm tra điều kiện log2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024.
Bước 4: Đáp ánQua kiểm tra các giá trị nn và tính toán unu_n, ta tìm thấy:
log2un+un<−10239/1024\log_2 u_n + u_n < -10239/1024
với nn nhỏ nhất thỏa mãn điều kiện này là:
Đáp án:
n=23\boxed{n = 23}
Do đó, đáp án đúng là A. n=23n = 23.
ca ngợi tình cảm yêu thương sâu nặng giữa hai mẹ con chiến sĩ Vệ Quốc Quân
.
ca ngợi tình cảm yêu thương sâu nặng giauwx hai mẹ con chiến sĩ Vệ Quốc Quân.