Nguyễn Đức Anh
Giới thiệu về bản thân
Ta có a/c=c/b
⇔c2=ab
Ta lại có: (a2+c2)/(b2+c2)=(a2+ab)/(b2+ab)
=a(a+b)/b(a+b)
=a/b (đpcm)
Ta có a/c=c/b
⇔c2=ab
Ta lại có: (a2+c2)/(b2+c2)=(a2+ab)/(b2+ab)
=a(a+b)/b(a+b)
=a/b (đpcm)
Ta có a/c=c/b
⇔c2=ab
Ta lại có: (a2+c2)/(b2+c2)=(a2+ab)/(b2+ab)
=a(a+b)/b(a+b)
=a/b (đpcm)
Ta có a/c=c/b
⇔c2=ab
Ta lại có: (a2+c2)/(b2+c2)=(a2+ab)/(b2+ab)
=a(a+b)/b(a+b)
=a/b (đpcm)
Ta có a/c=c/b
⇔c2=ab
Ta lại có: (a2+c2)/(b2+c2)=(a2+ab)/(b2+ab)
=a(a+b)/b(a+b)
=a/b (đpcm)
Ta có a/c=c/b
⇔c2=ab
Ta lại có: (a2+c2)/(b2+c2)=(a2+ab)/(b2+ab)
=a(a+b)/b(a+b)
=a/b (đpcm)
Ta có a/c=c/b
⇔c2=ab
Ta lại có: (a2+c2)/(b2+c2)=(a2+ab)/(b2+ab)
=a(a+b)/b(a+b)
=a/b (đpcm)
Ta có a/c=c/b
⇔c2=ab
Ta lại có: (a2+c2)/(b2+c2)=(a2+ab)/(b2+ab)
=a(a+b)/b(a+b)
=a/b (đpcm)
Ta có a/c=c/b
⇔c2=ab
Ta lại có: (a2+c2)/(b2+c2)=(a2+ab)/(b2+ab)
=a(a+b)/b(a+b)
=a/b (đpcm)
= 16.(-3) - ((-93)+ (-3)^3)
= -48 - ((-93) +(-27))
= -48 +93 +27
=45+27
=72