Trần Nam Phong

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Trần Nam Phong
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Gọi số tuổi của một người là t (tuổi). Để người đó được đi bầu cử đại biểu quốc hội thì t ≥ 18.

b) Gọi x (kg) là khối lượng hàng hóa mà thang máy chở được. Khi đó x ≤ 700.

c) Gọi a (đồng) là số tiền mua hàng. Để được giảm giá thì a ≥ 1 000 000.

d) Gọi y là số bóng được ném vào rổ.

Để được tham gia vào đội tuyển bóng rổ thì y ≥ 5.

Gọi số tiền bác Phương đã đầu tư cho khoản thứ nhất và thứ hai lần lượt là x, y (triệu đồng) (0 < x < 800, 0 < y < 800).

Theo bài, tổng số tiền cho hai khoản đầu tư là 800 triệu đồng nên ta có phương trình:

x + y = 800.

Số tiền lãi thu được mỗi năm từ khoản đầu tư thứ nhất là x.6% = 0,06x (triệu đồng).

Số tiền lãi thu được mỗi năm từ khoản đầu tư thứ hai là x.8% = 0,08y (triệu đồng).

Theo bài, tổng số tiền lãi thu được là 54 triệu đồng nên ta có phương trình:

0,06x + 0,08y = 54, hay 3x + 4y = 2 700.

Ta có hệ phương trình: x+y=8003x+4y=2  700.

Nhân hai vế của phương trình thứ nhất với 4, ta được hệ phương trình sau: 4x+4y=3  2003x+4y=2  700.

Trừ hai vế của hai phương trình trên, ta nhận được: x = 500.

Thay x = 500 vào phương trình x + y = 800, ta có 500 + y = 800. (1)

Giải phương trình (1):

500 + y = 800

          y = 300.

Ta thấy x = 500 và y = 300 thỏa mãn điều kiện.

Vậy số tiền bác Phương đã đầu tư cho khoản thứ nhất là 500 triệu đồng và cho khoản thứ hai là 300 triệu đồng.

a) Xét tam giác CEF vuông ở F có cos⁡C=CFCE

Xét tam giác CEF và tam giác CBA có

C^ là góc chung;

BAC^=EFC^=90∘

Suy ra  (g.g)

Do đó CFCE=CACB

Xét tam giác AFC và tam giác BEC có

C^ là góc chung;

CFCE=CACB (chứng minh trên)

Suy ra  (g.g)

Do đó CFCE=FABE

Mà cosC = CFCE

Suy ra AF = BE . cosC.

b) Vì tam giác ABC vuông tại A

Suy ra AB = BC . sinC = 10 . 0,6 = 6.

Xét tam giác ABC vuông tại A, theo định lí Pytago có

BC2 = AB2 + AC2

Suy ra AC=BC2−AB2=102−62=8

Mà E là trung điểm AC nên AE = EC = 4

Vì tam giác FEC vuông tại F

Suy ra FE = EC . sinC = 4 . 0,6 = 2,4

Xét tam giác FEC vuông tại F, theo định lí Pytago có

EC2 = FE2 + FC2

Suy ra FC=EC2−FE2=42−2,42=3,2

Khi đó BF = BC – FC = 10 – 3,2 = 6,8

Ta có SABFE = SABE + SBFE

=12AB.AE+12BF.FE

=12.6.4+12.6,8.2,4=20,16(cm2)

c) Ta có CFCE=FABE=3,24

Suy ra AF = 0,8BE

Vì tam giác ABE vuông tại A nên

BE2 = AB2 + AE2

Hay BE2 = 62 + 42

suy ra BE=52

Ta có SABFE=12AF.BE.sin⁡AOB^

⇔20,16=12.0,8.52.52.sin⁡AOB^

⇔sin⁡AOB^=20,1620,8=6365 .