Đinh Tiến Đạt

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Đinh Tiến Đạt
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) ABCD là hình bình hành => AD = BC và AD // BC.

Mà E là trung điểm của AD => AE = ED;

F là trung điểm của BC=> BF = FC.

=>DE = BF.

Xét tứ giác EBFD có DE // BF (vì AD // BC) và DE = BF => là hình bình hành

b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD => O là trung điểm của BD.

Ta có EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường.

Mà O là trung điểm của BD nên O là trung điểm của EF.

Vậy ba điểm E, O, F thẳng hàng.