

Trần Tiến Thành
Giới thiệu về bản thân



































Loại mạch | Hướng vận chuyển chủ yếu | Chất được vận chuyển |
Mạch gỗ | Từ rễ lên thân và lá | Nước và muối khoáng |
Mạch rây | Từ lá xuống thân và rễ | Chất hữu cơ |
a) Xét \(\Delta A B C\) và \(\Delta A D C\) có
\(\hat{C A B} = \hat{C A D} = 9 0^{\circ}\)
\(A C\) chung
\(A B = A D\) (giả thiết)
Do đó \(\Delta A B C = \Delta A D C\) (c - g - c)
Suy ra \(C B = C D\) (hai cạnh tương ứng)
Vậy \(\Delta C B D\) cân tại \(C\).
b) Ta có \(D E\) // \(B C\) nên \(\hat{C M B} = \hat{M E D}\)
Lại có \(\hat{B M C} = \hat{D M E}\) (đối đỉnh) (1)
\(\hat{M D E} = 18 0^{\circ} - \hat{D M E} - \hat{M E D}\)
\(\hat{B M C} = 18 0^{\circ} - \hat{C B M} - \hat{B M C}\)
Suy ra \(\hat{B C M} = \hat{M D E}\) (2)
Mặt khác \(M D = M C\) (giả thiết) (3)
Từ (1), (2), (3) suy ra \(\Delta M B C = \Delta M E D\) (g - c - g)
Suy ra \(D C = D E\) mà \(D C = B C\) nên \(D E = B C\) (điều phải chứng minh).
a) Xét \(\Delta A B C\) và \(\Delta A D C\) có
\(\hat{C A B} = \hat{C A D} = 9 0^{\circ}\)
\(A C\) chung
\(A B = A D\) (giả thiết)
Do đó \(\Delta A B C = \Delta A D C\) (c - g - c)
Suy ra \(C B = C D\) (hai cạnh tương ứng)
Vậy \(\Delta C B D\) cân tại \(C\).
b) Ta có \(D E\) // \(B C\) nên \(\hat{C M B} = \hat{M E D}\)
Lại có \(\hat{B M C} = \hat{D M E}\) (đối đỉnh) (1)
\(\hat{M D E} = 18 0^{\circ} - \hat{D M E} - \hat{M E D}\)
\(\hat{B M C} = 18 0^{\circ} - \hat{C B M} - \hat{B M C}\)
Suy ra \(\hat{B C M} = \hat{M D E}\) (2)
Mặt khác \(M D = M C\) (giả thiết) (3)
Từ (1), (2), (3) suy ra \(\Delta M B C = \Delta M E D\) (g - c - g)
Suy ra \(D C = D E\) mà \(D C = B C\) nên \(D E = B C\) (điều phải chứng minh).
a) Xét \(\Delta A B C\) và \(\Delta A D C\) có
\(\hat{C A B} = \hat{C A D} = 9 0^{\circ}\)
\(A C\) chung
\(A B = A D\) (giả thiết)
Do đó \(\Delta A B C = \Delta A D C\) (c - g - c)
Suy ra \(C B = C D\) (hai cạnh tương ứng)
Vậy \(\Delta C B D\) cân tại \(C\).
b) Ta có \(D E\) // \(B C\) nên \(\hat{C M B} = \hat{M E D}\)
Lại có \(\hat{B M C} = \hat{D M E}\) (đối đỉnh) (1)
\(\hat{M D E} = 18 0^{\circ} - \hat{D M E} - \hat{M E D}\)
\(\hat{B M C} = 18 0^{\circ} - \hat{C B M} - \hat{B M C}\)
Suy ra \(\hat{B C M} = \hat{M D E}\) (2)
Mặt khác \(M D = M C\) (giả thiết) (3)
Từ (1), (2), (3) suy ra \(\Delta M B C = \Delta M E D\) (g - c - g)
Suy ra \(D C = D E\) mà \(D C = B C\) nên \(D E = B C\) (điều phải chứng minh).
M(x)=x8−101x7+101x6−101x5+...+101x2−101x+125
\(= x^{8} - 100 x^{7} - x^{7} + 100 x^{6} + x^{6} - 100 x^{5} - x^{5} + . . . + 100 x^{2} + x^{2} - 100 x - x + 100 + 25\)
\(= x^{7} \left(\right. x - 100 \left.\right) - x^{6} \left(\right. x - 100 \left.\right) + x^{5} \left(\right. x - 100 \left.\right) - . . . + x \left(\right. x - 100 \left.\right) - \left(\right. x - 100 \left.\right) + 25\)
Vậy \(M \left(\right. 100 \left.\right) = 25\).
M(x)=x8−101x7+101x6−101x5+...+101x2−101x+125
\(= x^{8} - 100 x^{7} - x^{7} + 100 x^{6} + x^{6} - 100 x^{5} - x^{5} + . . . + 100 x^{2} + x^{2} - 100 x - x + 100 + 25\)
\(= x^{7} \left(\right. x - 100 \left.\right) - x^{6} \left(\right. x - 100 \left.\right) + x^{5} \left(\right. x - 100 \left.\right) - . . . + x \left(\right. x - 100 \left.\right) - \left(\right. x - 100 \left.\right) + 25\)
Vậy \(M \left(\right. 100 \left.\right) = 25\).
M(x)=x8−101x7+101x6−101x5+...+101x2−101x+125
\(= x^{8} - 100 x^{7} - x^{7} + 100 x^{6} + x^{6} - 100 x^{5} - x^{5} + . . . + 100 x^{2} + x^{2} - 100 x - x + 100 + 25\)
\(= x^{7} \left(\right. x - 100 \left.\right) - x^{6} \left(\right. x - 100 \left.\right) + x^{5} \left(\right. x - 100 \left.\right) - . . . + x \left(\right. x - 100 \left.\right) - \left(\right. x - 100 \left.\right) + 25\)
Vậy \(M \left(\right. 100 \left.\right) = 25\).
M(x)=x8−101x7+101x6−101x5+...+101x2−101x+125
\(= x^{8} - 100 x^{7} - x^{7} + 100 x^{6} + x^{6} - 100 x^{5} - x^{5} + . . . + 100 x^{2} + x^{2} - 100 x - x + 100 + 25\)
\(= x^{7} \left(\right. x - 100 \left.\right) - x^{6} \left(\right. x - 100 \left.\right) + x^{5} \left(\right. x - 100 \left.\right) - . . . + x \left(\right. x - 100 \left.\right) - \left(\right. x - 100 \left.\right) + 25\)
Vậy \(M \left(\right. 100 \left.\right) = 25\).
Theo bất đẳng thức tam giác:
\(A B - A C < B C < A B + A C\)
\(5 < B C < \&\text{nbsp}; 7\)
\(B C = 6 c m\)
Vậy tam giác \(A B C\) cân tại \(B\).
Theo bất đẳng thức tam giác:
\(A B - A C < B C < A B + A C\)
\(5 < B C < \&\text{nbsp}; 7\)
\(B C = 6 c m\)
Vậy tam giác \(A B C\) cân tại \(B\).