

Phùng Hứa Hà Giang
Giới thiệu về bản thân



































bớt dùm
1=1=3
ngaos
Gọi số cây trồng được của mỗi lớp 7A, 7B, 7C lần lượt là \(a\), \(b\), \(c\) (\(a , b , c \in \mathbb{N}^{*}\))
Vì năng suất mỗi người như nhau nên số học sinh và số cây trồng được tỉ lệ thuận với nhau, theo đề ta
\(\frac{a}{18} = \frac{b}{20} = \frac{c}{21}\) và \(a + b + c = 118\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{18} = \frac{b}{20} = \frac{c}{21} = \frac{a + b + c}{18 + 20 + 21} = \frac{118}{59} = 2\)
\(a = 18.2 = 36\)
\(b = 20.2 = 40\)
\(c = 21.2 = 42\)
Vậy lớp 7A, 7B, 7C trồng được số cây lần lượt là \(36\) (cây), \(40\) (cây), \(42\) (cây).
a) \(H \left(\right. x \left.\right) = A \left(\right. x \left.\right) + B \left(\right. x \left.\right) = \left(\right. 2 x^{3} - 5 x^{2} - 7 x - 2 024 \left.\right) + \left(\right. - 2 x^{3} + 9 x^{2} + 7 x + 2 025 \left.\right)\)
\(H \left(\right. x \left.\right) = \left(\right. 2 x^{3} - 2 x^{3} \left.\right) + \left(\right. - 5 x^{2} + 9 x^{2} \left.\right) + \left(\right. - 7 x + 7 x \left.\right) + \left(\right. - 2 024 + 2 025 \left.\right)\)
\(H \left(\right. x \left.\right) = 4 x^{2} + 1\).
b, Vì \(4 x^{2} \geq 0\) với mọi \(x\) nên \(4 x^{2} + 1 > 0\) với mọi \(x\)
Suy ra \(H \left(\right. x \left.\right) \neq 0\) với mọi giá trị của \(x\)
Vậy đa thức \(H \left(\right. x \left.\right)\) vô nghiệm.
a) k=20
b) khi x=4 thì y=5
khi x=-2 thì y=-10