

Nguyễn Hoàng Bách
Giới thiệu về bản thân



































a) Ta có: \(A x ⊥ A C\) và \(B y\) // \(A C\)
Suy ra \(A x ⊥ B y\) \(\Rightarrow \hat{A M B} = 9 0^{\circ}\).
Xét \(\Delta M A Q\) và \(\Delta Q B M\) có
\(\hat{M Q A} = \hat{B M Q}\) (so le trong);
\(M Q\) là cạnh chung;
\(\hat{A M Q} = \hat{B Q M}\) (\(A x\) // \(Q B\)).
Suy ra \(\Delta MAQ=\Delta QBM\) (g-c-g)
Suy ra \(\hat{M B Q} = \hat{M A Q} = 9 0^{\circ}\) (2 góc tương ứng)
Xét tứ giác \(A M B Q\) có: \(\hat{Q A M} = \hat{A M B} = \hat{M B Q} = 9 0^{\circ}\)
Suy ra tứ giác \(A M B Q\) là hình chữ nhật.
b) Do tứ giác \(A M B Q\) là hình chữ nhật.
Mà \(P\) là trung điểm AB\(n \hat{e} n\)PQ=AB (1)
Xét \(\Delta A I B\) vuông tại \(I\) và có \(I P\) là đường trung tuyến.
Suy ra \(I P = \frac{1}{2} A B\) (2)
Từ (1) và (2) \(\Rightarrow Q P = I P \Rightarrow \Delta P Q I\) cân tại \(P\).
Xét \(\Delta A B C\) có \(B M\) là đường trung tuyến ứng với cạnh \(A C\) mà \(B M = \frac{1}{2} A C\) suy ra \(\Delta A B C\) vuông tại \(B\).
Tứ giác \(A B C D\) có \(\hat{A} = \hat{D} = \hat{B} = 90^{\circ}\)
Suy ra tứ giác \(A B C D\) là hình chữ nhật.
Ta có \(I A = I C\) và \(I H = I D\).
Suy ra \(A H C D\) là hình bình hành do có hai đường chéo \(A C\) và \(D H\) cắt nhau tại trung điểm \(I\).
Mà \(\hat{A H C} = 9 0^{\circ}\) suy ra \(A H C D\) là hình chữ nhật.
Xét tam giác \(A B C\) có hai đường trung tuyến \(B M\) và \(C N\) cắt nhau tại \(G\) (giả thiết) nên \(G\) là trọng tâm của \(\Delta A B C\).
Suy ra \(G M = \frac{G B}{2}\); \(G N = \frac{G C}{2}\) (tính chất trọng tâm của tam giác) (1)
Mà \(P\) là trung điểm của \(G B\) (giả thiết) nên \(G P = P B = \frac{G B}{2}\) (2)
\(Q\) là trung điểm của \(G C\) (giả thiết) nên \(G Q = Q C = \frac{G C}{2}\) (3)
Từ (1), (2) và (3) suy ra \(G M = G P\) và \(G N = G Q\).
Xét tứ giác \(P Q M N\) có: \(G M = G P\) và \(G N = G Q\) (chứng minh trên)
Do đó tứ giác \(P Q M N\) có hai đường chéo \(M P\) và \(N Q\) cắt nhau tại trung điểm \(G\) của mỗi đường nên là hình bình hành.
a) Do \(A B C D\) là hình bình hành nên \(A D\) // \(B C\) và \(A D = B C\).
Do \(A D\) // \(B C\) nên \(\hat{A D B} \&\text{nbsp}; = \hat{C B D}\) (so le trong)
Xét \(\Delta A D H\) và \(\Delta C B K\) có:
\(\hat{A H D} \&\text{nbsp}; = \hat{C K B} = 9 0^{\circ}\);
\(A D = B C\) (chứng minh trên);
\(\hat{A D H} \&\text{nbsp}; = \hat{C B K}\) (do \(\hat{A D B} \&\text{nbsp}; = \hat{C B D}\)).
Do đó \(\Delta \&\text{nbsp}; A D H = \Delta \&\text{nbsp}; C B K\) (cạnh huyền – góc nhọn).
Suy ra \(A H = C K\) (hai cạnh tương ứng).
Ta có \(A H \bot \&\text{nbsp}; D B\) và \(C K \bot \&\text{nbsp}; D B\) nên \(A H\) // \(C K\).
Tứ giác \(A H C K\) có \(A H\) // \(C K\) và \(A H = C K\) nên \(A H C K\) là hình bình hành (dấu hiệu nhận biết).
b) Do \(A H C K\) là hình bình hành (câu a) nên hai đường chéo \(A C\) và \(H K\) cắt nhau tại trung điểm của mỗi đường.
Mà \(I\) là trung điểm của \(H K\) (giả thiết) nên \(I\) là trung điểm của \(A C\).
Do \(A B C D\) là hình bình hành nên hai đường chéo \(A C\) và \(B D\) cắt nhau tại trung điểm của mỗi đường.
Mà \(I\) là trung điểm của \(A C\) nên \(I\) là trung điểm của \(B D\), hay \(I B = I D\).
a) Do \(A B C D\) là hình bình hành nên \(A D\) // \(B C\) và \(A D = B C\).
Do \(A D\) // \(B C\) nên \(\hat{A D B} \&\text{nbsp}; = \hat{C B D}\) (so le trong)
Xét \(\Delta A D H\) và \(\Delta C B K\) có:
\(\hat{A H D} \&\text{nbsp}; = \hat{C K B} = 9 0^{\circ}\);
\(A D = B C\) (chứng minh trên);
\(\hat{A D H} \&\text{nbsp}; = \hat{C B K}\) (do \(\hat{A D B} \&\text{nbsp}; = \hat{C B D}\)).
Do đó \(\Delta \&\text{nbsp}; A D H = \Delta \&\text{nbsp}; C B K\) (cạnh huyền – góc nhọn).
Suy ra \(A H = C K\) (hai cạnh tương ứng).
Ta có \(A H \bot \&\text{nbsp}; D B\) và \(C K \bot \&\text{nbsp}; D B\) nên \(A H\) // \(C K\).
Tứ giác \(A H C K\) có \(A H\) // \(C K\) và \(A H = C K\) nên \(A H C K\) là hình bình hành (dấu hiệu nhận biết).
b) Do \(A H C K\) là hình bình hành (câu a) nên hai đường chéo \(A C\) và \(H K\) cắt nhau tại trung điểm của mỗi đường.
Mà \(I\) là trung điểm của \(H K\) (giả thiết) nên \(I\) là trung điểm của \(A C\).
Do \(A B C D\) là hình bình hành nên hai đường chéo \(A C\) và \(B D\) cắt nhau tại trung điểm của mỗi đường.
Mà \(I\) là trung điểm của \(A C\) nên \(I\) là trung điểm của \(B D\), hay \(I B = I D\).
Xét tam giác \(A B C\) có hai đường trung tuyến \(B M\) và \(C N\) cắt nhau tại \(G\) (giả thiết) nên \(G\) là trọng tâm của \(\Delta A B C\).
Suy ra \(G M = \frac{G B}{2}\); \(G N = \frac{G C}{2}\) (tính chất trọng tâm của tam giác) (1)
Mà \(P\) là trung điểm của \(G B\) (giả thiết) nên \(G P = P B = \frac{G B}{2}\) (2)
\(Q\) là trung điểm của \(G C\) (giả thiết) nên \(G Q = Q C = \frac{G C}{2}\) (3)
Từ (1), (2) và (3) suy ra \(G M = G P\) và \(G N = G Q\).
Xét tứ giác \(P Q M N\) có: \(G M = G P\) và \(G N = G Q\) (chứng minh trên)
Do đó tứ giác \(P Q M N\) có hai đường chéo \(M P\) và \(N Q\) cắt nhau tại trung điểm \(G\) của mỗi đường nên là hình bình hành.
a) Vì ABCD là hình bình hành nên AB = CD; AB // CD.
Mà hai điểm B, C lần lượt là trung điểm AE, DF.
Suy ra AE = DF; AB = BE = CD = CF.
Tứ giác AEFD có AE // DF (vì AB // CD); AE = DF (chứng minh trên).
Do đó tứ giác AEFD là hình bình hành.
Tứ giác ABFC có AB // CF (vì AB // CD); AB = CF (chứng minh trên).
Do đó tứ giác ABFC là hình bình hành.
b) Vì hình bình hành AEFD có hai đường chéo AF và DE nên chúng cắt nhau tại trung điểm của mỗi đường, ta gọi giao điểm đó là O.
Hình bình hành AEFD có hai đường chéo AF và BC.
Mà O là trung điểm của AF.
Suy ra O cũng là trung điểm của BC.
Vậy các trung điểm của ba đoạn thẳng AF, DE, BC trùng nhau.
Vì \(A B C D\) là hình bình hành nên ta có:
+ Hai đường chéo \(A C\) và \(B D\) cắt nhau tại \(O\) nên \(O A = O C\), \(O B = O D\).
+ \(A B\) // \(C D\) nên \(A M\) // \(C N\) suy ra \(\hat{O A M} = \hat{O C N}\) (hai góc so le trong).
Xét \(\Delta O A M\) và \(\Delta OCN\) có:
OAM = OCN(chứng minh trên)
\(O A = O C\) (chứng minh trên)
\(\hat{A O M}\)=CON (hai góc đối đỉnh)
Do đó \(\Delta OAM=\Delta OCN\) (g.c.g).
Suy ra \(A M = C N\) (hai cạnh tương ứng).
Mặt khác, \(A B = C D\) (chứng minh trên);
\(A B = A M + B M\); \(C D = C N + D N\).
Suy ra \(B M = D N\).
Xét tứ giác \(M B N D\) có:
\(B M\) // \(D N\) (vì \(A B\) // \(C D\))
\(B M = D N\) (chứng minh trên)
Do đó, tứ giác \(M B N D\) là hình bình hành.
a) Vì ABCD là hình bình hành nên AB = CD, AB // CD.
Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE = 1221AB, CF = DF = 1221CD
Do đó AE = BE = CF = DF.
Xét tứ giác AEFD có:
AE // DF (vì AB // CD);
AE = DF (chứng minh trên)
Do đó tứ giác AEFD là hình bình hành.
Xét tứ giác AECF có:
AE // CF (vì AB // CD);
AE = CF (chứng minh trên)
Do đó tứ giác AECF là hình bình hành.
Vậy hai tứ giác AEFD, AECF là những hình bình hành.
b) Vì tứ giác AEFD là hình bình hành nên EF = AD.
Vì tứ giác AECF là hình bình hành nên AF = EC.
Vậy EF = AD, AF = EC.