K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 giờ trước (11:28)

chữ to dị, ai mà đọc đc, mờ quá

7 giờ trước (13:13)

a) Xét \(\triangle BCH\)\(\triangle BAH\) có:

BA = BC( \(\triangle ABC\) cân tại \(\hat{B}\) )

BH chung

\(\hat{A}=\hat{C}\) (\(\triangle ABC\) cân tại \(\hat{B}\) )

\(\Rightarrow\triangle BCH=\triangle BAH\left(c.c.c\right)\)

Nên \(\hat{BHA}=\hat{BHC};AH=HC\left(1\right)\)

Mà hai góc ở vị trí kề bù

\(\Rightarrow\hat{BAH}=\hat{BHC}=\frac{180^0}{2}=90^0\Rightarrow BH\bot AC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\) BH là đường trung trực của AC

b) Do \(M\) là trung điểm \(B C\), và \(E\) là giao điểm của \(B H\) và đường vuông góc \(B C\) tại \(M\), suy ra \(E\) nằm trên đường trung trực của \(B C\).

Xét tam giác \(E A B\):

\(B H\) là đường cao trong tam giác cân \(A B C\), nên cũng là đường trung trực của \(A C\), do đó \(A E = E B\).

\(\Rightarrow\triangle EAB\) cân tại \(E\).

c) Do \(E\) nằm trên đường trung trực của \(B C\), nên \(E\) là trung điểm của đoạn \(B F\).

\(M\) là trung điểm của \(B C\) nên \(E F < B F\).

\(D F = B F\), nên \(2 E F < D F\).

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

=>EA=ED

=>ΔEAD cân tại E

b: BA=BD

=>B nằm trên đường trung trực của AD(1)

Ta có: EA=ED

=>E nằm trên đường trung trực của AD(2)

Từ (1),(2) suy ra BE là đường trung trực của AD

=>BE\(\perp\)AD tại H và H là trung điểm của AD

ΔDHE vuông tại H

=>DE là cạnh huyền

=>DE là cạnh lớn nhất trong ΔDHE

=>DE>HD

\(\widehat{DAM}=\widehat{DAC}+\widehat{MAC}=90^0+\widehat{DAC}>90^0\)

Xét ΔDAM có \(\widehat{DAM}>90^0\)

nên DM là cạnh lớn nhất trong ΔDAM

=>DM>DA

mà DA=2DH

nên DM>2DH

c: Xét ΔADF có

H là trung điểm của AD

HE//DF

DO đó: E là trung điểm của AF

Xét ΔADF có

FH,DE là các đường trung tuyến

FH cắt DE tại K

DO đó: K là trọng tâm của ΔADF

=>KD=2KE

18 tháng 2

Số lượng giờ làm việc để hoàn thành công việc đó: 8 x 30 = 240 (giờ)

Nếu tăng thêm 10 người thì số lượng công nhân hiện tại là: 30 + 10 = 40 (người)

Số giờ hoàn thành mỗi người cần làm: 240 : 40 = 6 (giờ)

Công việc của mỗi người cần làm giảm bớt được: 8 - 6 = 2 (giờ)

Đáp số: 2 giờ

2x=3y=4z

=>\(\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\)

=>\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)

mà x+y-5z=-5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-5z}{6+4-5\cdot3}=\dfrac{-5}{-5}=1\)

=>\(\left\{{}\begin{matrix}x=6\cdot1=6\\y=4\cdot1=4\\z=3\cdot1=3\end{matrix}\right.\)

18 tháng 2

\(3x=5y=6z\)

\(\Rightarrow\dfrac{3x}{30}=\dfrac{5y}{30}=\dfrac{6z}{30}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{x-y+z}{10-6+5}=\dfrac{72}{9}=8\)

\(\dfrac{x}{10}=8\Rightarrow x=8.10=80\)

\(\dfrac{y}{6}=8\Rightarrow y=8.6=48\)

\(\dfrac{z}{5}=8\Rightarrow z=8.5=40\)

Vậy x = 80; y = 48; z = 40

16 tháng 2

tỉ số giữa con lợn trên cho con bò là: \(\dfrac{7}{5}\)

hiệu số phần bằng nhau: 7 - 5 = 2 (phần)

số con lợn: 4 x 7 : 2 = 14 (con) 

số con bò: 14 - 4 = 10 (con)

vậy số con bò là 10 con

16 tháng 2

Câu a

A = m\(x^2\) + 2 - 1

\(x=1\) là nghiệm của A khi và chỉ khi:

m.1\(^2\) + 2 - 1 = 0

m + 2 - 1 = 0

m = 1 - 2

m = -1

Vậy m = - 1 thì \(x=1\) là nghiệm của A


16 tháng 2

b; B = \(x^2\) + m\(x\) - 3

\(x=1\) là nghiệm của B khi và chỉ khi

1\(^2\) + m.1 - 3 = 0

1 + m - 3 = 0

m = 3 - 1

m = 2

Vậy với m = 2 thì \(x=1\) là nghiệm của B

11 tháng 2

Vì DE = DF (giả thiết)

DM = DN (giả thiết)

=> DE - DM = DF - DN

=> ME = NF

Xét tam giác DME và tam giác DNF có:

DE = DF (giả thiết)

góc D chung

DM = DN (giả thiết)

=> tam giác DME = tam giác DNF (cạnh - góc - cạnh) => ME = NF (2 cạnh tương ứng) b, Xét tam giác MEF và tam giác NFE có: ME = NF (chứng minh trên)

EF chung

MF = NE (chứng minh trên)

=> tam giác MEF = tam giác NFE (cạnh - cạnh - cạnh) c, I: Xét tam giác DME và tam giác DNF có: DE = DF (giả thiết)

góc D chung

DM = DN (giả thiết)

=> tam giác DME = tam giác DNF (cạnh - góc - cạnh) => góc DEM = góc DFN (2 góc tương ứng) Mà góc DEM + góc MEN = 180 độ (2 góc kề bù)

góc DFN + góc MFE = 180 độ (2 góc kề bù)

=> góc MEN = góc MFE

Xét tam giác EMI và tam giác FNI có:

ME = NF (chứng minh trên)

góc EMI = góc FNI (2 góc đối đỉnh)

góc MEN = góc MFE (chứng minh trên)

=> tam giác EMI = tam giác FNI (góc - cạnh - góc)

12 tháng 2

a) Xét \(\Delta DNE\) và \(\Delta DMF\) có:

\(DN=DM\left(gt\right)\)

\(\widehat{D}\) chung

\(DE=DF\left(gt\right)\)

\(\Rightarrow\Delta DNE=\Delta DMF\left(c-g-c\right)\)

\(\Rightarrow NE=MF\) (hai cạnh tương ứng)

b) Ta có:

\(ME=DE-DM\)

\(NF=DF-DN\)

Mà \(DE=DF\left(gt\right)\)

\(DM=DN\left(gt\right)\)

\(\Rightarrow ME=NF\)

Xét \(\Delta MEF\) và \(\Delta NFE\) có:

\(ME=NF\left(cmt\right)\)

\(MF=NE\left(cmt\right)\)

\(EF\) là cạnh chung

\(\Rightarrow\Delta MEF=\Delta NFE\left(c-c-c\right)\)

c) Do \(\Delta DNE=\Delta DMF\left(cmt\right)\)

\(\Rightarrow\widehat{DEN}=\widehat{DFM}\) (hai góc tương ứng)

\(\Rightarrow\widehat{MEI}=\widehat{NFI}\)

Do \(\Delta MEF=\Delta NFE\left(cmt\right)\)

\(\Rightarrow\widehat{EMF}=\widehat{FNE}\) (hai góc tương ứng)

\(\Rightarrow\widehat{EMI}=\widehat{FNI}\)

Xét \(\Delta EMI\) và \(\Delta FNI\) có:

\(\widehat{MEI}=\widehat{NFI}\left(cmt\right)\)

\(ME=NF\left(cmt\right)\)

\(\widehat{EMI}=\widehat{FNI}\left(cmt\right)\)

\(\Rightarrow EMI\Delta=\Delta FNI\left(g-c-g\right)\)

\(A=4x^2y\cdot\left(-3xy^2\right)\)

\(=4\cdot\left(-3\right)\cdot x^2\cdot x\cdot y\cdot y^2\)

\(=-12x^3y^3\)

8 tháng 2

A = 2\(x^2\) - 8\(x\) + 1

A = 2(\(x^2-4x+4\)) - 7

A = 2.\(\left(x-2\right)^2\) - 7

\(\left(x-2\right)^2\) ≥ 0 ∀\(x\)

(\(x-2\))\(^2\) - 7 ≥ - 7 ∀\(x\) dấu = xảy ra khi \(x-2=0\rArr x=2\)

Kết luận giá trị nhỏ nhất của biểu thức A = \(2x^2-8x+1\) là -7 xảy ra khi \(x=2\)