2 tổ công nhân sản xuất trong tháng đầu được 300 chi tiết máy . sang tháng thứ 2 tổ 1 vượt mức 15%, tổ 2 vượt mức 20% so với thắng 1,do đó cả hai sản xuất được 352 chi tiết máy.tính số chi tiết máy mà mỗi tổ sản xuất được trong tháng đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Tìm \(M\) để đồ thị hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\):
Để hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\), ta thay giá trị \(x = 2\) và \(y = 4\) vào phương trình hàm số:
\(y = \left(\right. m + 1 \left.\right) x^{2}\)
Thay \(x = 2\) và \(y = 4\):
\(4 = \left(\right. m + 1 \left.\right) \cdot 2^{2}\) \(4 = \left(\right. m + 1 \left.\right) \cdot 4\) \(4 = 4 \left(\right. m + 1 \left.\right)\)
Chia cả hai vế cho 4:
\(1 = m + 1\) \(m = 0\)
Vậy giá trị của \(m\) là 0.
like minh nhe minh lam duoc cau a thôi
Để giải bài toán này, chúng ta sẽ thực hiện từng bước một.
a) Tìm \(m\) để đồ thị hàm số đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\)
- Thay tọa độ điểm A vào hàm số:
Hàm số cho trước là: \(y = \left(\right. m + 1 \left.\right) x^{2}\)Thay \(x = 2\) và \(y = 4\): \(4 = \left(\right. m + 1 \left.\right) \left(\right. 2^{2} \left.\right)\) - Giải phương trình:
Tính giá trị \(2^{2}\): \(2^{2} = 4 \Rightarrow 4 = \left(\right. m + 1 \left.\right) \cdot 4\)Chia cả hai vế cho 4: \(1 = m + 1\)Trừ 1 từ cả hai vế: \(m = 0\)
Kết luận phần a:
- Giá trị của \(m\) là \(0\).
b) Vẽ đồ thị hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) với giá trị \(m\) vừa tìm được
- Thay giá trị \(m\) vào hàm số:
Với \(m = 0\): \(y = \left(\right. 0 + 1 \left.\right) x^{2} = x^{2}\) - Xác định các điểm trên đồ thị:
- Khi \(x = - 2\), \(y = \left(\right. - 2 \left.\right)^{2} = 4\)
- Khi \(x = - 1\), \(y = \left(\right. - 1 \left.\right)^{2} = 1\)
- Khi \(x = 0\), \(y = 0^{2} = 0\)
- Khi \(x = 1\), \(y = 1^{2} = 1\)
- Khi \(x = 2\), \(y = 2^{2} = 4\)
- Vẽ đồ thị:
Đồ thị của hàm số \(y = x^{2}\) là một parabol mở lên trên. Các điểm mà chúng ta đã tính sẽ giúp hình dung đồ thị: - Điểm \(\left(\right. - 2 , 4 \left.\right)\)
- Điểm \(\left(\right. - 1 , 1 \left.\right)\)
- Điểm \(\left(\right. 0 , 0 \left.\right)\)
- Điểm \(\left(\right. 1 , 1 \left.\right)\)
- Điểm \(\left(\right. 2 , 4 \left.\right)\)
Kết luận phần b:
- Đồ thị của hàm số \(y = x^{2}\) là một parabol mở lên với đỉnh tại điểm \(\left(\right. 0 , 0 \left.\right)\).
Nếu bạn cần thêm thông tin hoặc có câu hỏi gì khác, hãy cho tôi biết!

Gọi H là giao điểm của BC và AD
D đối xứng A qua BC
=>BC\(\perp\)AD tại H và H là trung điểm của AD
Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
=>BA=BD
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
DO đó: ΔCAD cân tại C
=>CA=CD
Xét ΔBAC và ΔBDC có
BA=BD
CA=CD
BC chung
Do đó: ΔBAC=ΔBDC
=>\(\widehat{BAC}=\widehat{BDC}=90^0\)
=>ABDC là tứ giác nội tiếp

Gọi vận tốc của cano lúc nước yên lặng là x(km/h)
(Điều kiện: x>4)
vận tốc lúc xuôi dòng là x+4(km/h)
Vận tốc lúc ngược dòng là x-4(km/h)
Thời gian đi xuôi dòng là \(\dfrac{30}{x+4}\left(giờ\right)\)
Thời gian đi ngược dòng là \(\dfrac{30}{x-4}\left(giờ\right)\)
Tổng thời gian cả đi lẫn về là 4 giờ nên ta có:
\(\dfrac{30}{x+4}+\dfrac{30}{x-4}=4\)
=>\(\dfrac{30\left(x-4\right)+30\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=4\)
=>\(4\left(x^2-16\right)=60x\)
=>\(x^2-16=15x\)
=>\(x^2-15x-16=0\)
=>(x-16)(x+1)=0
=>\(\left[{}\begin{matrix}x-16=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Vậy: Vận tốc của cano lúc nước yên lặng là 16km/h

bàu 1 : gọi v2 (km/h) là vận tốc của xe thứ hai (đk: v1 > v2 > 0)
vận tốc xe 1 sẽ là v1 = v2 + 10 (km/h)
thời gian xe 1 đi từ A -> B: \(t_1=\dfrac{200}{v_1}=\dfrac{200}{v_2+10}\left(h\right)\)
thời gian xe 2 đi từ A -> B: \(t_2=\dfrac{200}{v_2}\left(h\right)\)
theo đề bài, xe thứ nhất đến sớm hơn 1 giờ nên:
\(t_2-t_1=1\Leftrightarrow\dfrac{200}{v_2}-\dfrac{200}{v_2+10}=1\\ =>200\left(v_2+10\right)-200v_2=v_2\left(v_2+10\right)\\ =>200v_2+2000-200v_2=v_2^2+10v_2\\ =>2000=v_2^2+10v_2\\ =>v_2^2+10v_2-2000=0\\ =>\left[{}\begin{matrix}v_2=40\left(km.h\right)\left(TM\right)\\v_2=-50\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)
\(v_1=v_2+10=40+10=50\left(km.h\right)\)
vậy vận tốc xe 1 là 50km/h; vận tốc xe 2 là 40km/h
bài 2: gọi \(t_d\text{ là thời gian dự tính; }t_t\text{ là thời gian thực tế}\)
thời gian người đó dự định đi hết quãng đường là:
\(t_d=\dfrac{90}{v}\left(h\right)\)
1/2 quãng đường là: \(90\cdot\dfrac{1}{2}=45\left(km\right)\)
quãng đường đầu tiên người đó đi: \(t_1=\dfrac{45}{v}\left(h\right)\)
quãng đường còn lại người đó đi: \(t_2=\dfrac{45}{v-10}\left(h\right)\)
thời gian thực tế người đó đi là: \(t_t=\dfrac{45}{v}+\dfrac{45}{v-10}\left(h\right)\)
mà \(t_t=t_d+\dfrac{18}{60}\)
\(=>\dfrac{45}{v}+\dfrac{45}{v-10}=\dfrac{90}{v}+0,3\\ =>\dfrac{45}{v-10}-\dfrac{45}{v}=0,3\\ 45v-45\left(v-10\right)=0,3v\left(v-10\right)\\ 45v-45v+450=0,3v^2-3v\\ =>0,3v^2-3v-450=0\\ < =>v^2-10v-1500=0\\ =>\left[{}\begin{matrix}v\approx44\left(km.h\right)\left(TM\right)\\v\approx-34\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)
thời gian thực tế người đó đi là:
\(t_t=\dfrac{45}{44}+\dfrac{45}{44-10}\approx2,34\left(h\right)=2h20p\)
vậy vận tốc dự đinh là 44km/hl thời gian đi là 2h20p

a: Khi x=16 thì \(B=\dfrac{4+3}{4-3}=\dfrac{7}{1}=7\)
b: \(A=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{x-9}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+9-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}+6-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{1}{\sqrt{x}-3}\)

Gọi A,B lần lượt là trung điểm của MP,MN. Gọi O là giao điểm của NA và PB
Ta có: \(MB=BN=\dfrac{MN}{2}\)
\(MA=AP=\dfrac{MP}{2}\)
mà MN=MP
nên MB=BN=MA=AP
Xét ΔBNP và ΔAPN có
BN=AP
\(\widehat{BNP}=\widehat{APN}\)
PN chung
Do đó: ΔBNP=ΔAPN
=>\(\widehat{BPN}=\widehat{ANP}\)
=>\(\widehat{ONP}=\widehat{OPN}\)
=>ON=OP
ΔMNP đều
mà PB là đường trung tuyến
nên PB\(\perp\)MN tại B
=>OB\(\perp\)MN tại B
Xét ΔOMN có
OB là đường cao
OB là đường trung tuyến
Do đó: ΔOMN cân tại O
=>OM=ON
mà ON=OP
nên OM=ON=OP
=>O là tâm đường tròn ngoại tiếp ΔMNP
Xét ΔMNP đều có PB là đường trung tuyến
nên \(PB=MN\cdot\dfrac{\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)
Xét ΔMNP có
PB,NA là các đường trung tuyến
PB cắt NA tại O
Do đó: O là trọng tâm của ΔMNP
=>\(OP=\dfrac{2}{3}\cdot PB=\dfrac{2}{3}\cdot5\sqrt{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
=>Bán kính là \(\dfrac{10\sqrt{3}}{3}\left(cm\right)\)

Câu 1:
x2−4x+3=0x^2 - 4x + 3 = 0x2−4x+3=0
Phương trình này là phương trình bậc hai có dạng chuẩn ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0 với:
- a=1a = 1a=1, b=−4b = -4b=−4, c=3c = 3c=3.
Tính biệt số Δ\DeltaΔ:
Δ=b2−4ac=(−4)2−4(1)(3)=16−12=4.\Delta = b^2 - 4ac = (-4)^2 - 4(1)(3) = 16 - 12 = 4.Δ=b2−4ac=(−4)2−4(1)(3)=16−12=4.
Vì Δ>0\Delta > 0Δ>0, phương trình có hai nghiệm phân biệt:
x=−b±Δ2a=4±22.x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{4 \pm 2}{2}.x=2a−b±Δ=24±2.
Suy ra hai nghiệm:
x1=4−22=1,x2=4+22=3.x_1 = \frac{4 - 2}{2} = 1, \quad x_2 = \frac{4 + 2}{2} = 3.x1=24−2=1,x2=24+2=3.
Vậy nghiệm của phương trình là x=1x = 1x=1 hoặc x=3x = 3x=3.
Câu 2
Phương trình:
x2−2(m−1)x+m2−m−4=0x^2 - 2(m-1)x + m^2 - m - 4 = 0x2−2(m−1)x+m2−m−4=0
Có hai nghiệm phân biệt khi:
Δ′=(m−1)2−(m2−m−4)>0.\Delta' = (m-1)^2 - (m^2 - m - 4) > 0.Δ′=(m−1)2−(m2−m−4)>0.
Tính toán:
m2−2m+1−m2+m+4>0.m^2 - 2m + 1 - m^2 + m + 4 > 0.m2−2m+1−m2+m+4>0. −m+5>0.- m + 5 > 0.−m+5>0. m<5.m < 5.m<5.
Ta có điều kiện:
x12−2x2(x2−2)+m2−5m=0.x_1^2 - 2x_2(x_2 - 2) + m^2 - 5m = 0.x12−2x2(x2−2)+m2−5m=0.
Sử dụng định lý Vi-ét
x1+x2=2(m−1),x_1 + x_2 = 2(m-1),x1+x2=2(m−1), x1x2=m2−m−4.x_1 x_2 = m^2 - m - 4.x1x2=m2−m−4.
Dùng đẳng thức:
x12=(x1+x2)2−2x1x2.x_1^2 = (x_1 + x_2)^2 - 2x_1 x_2.x12=(x1+x2)2−2x1x2.
Thay vào:
(2(m−1))2−2(m2−m−4)−2x2(x2−2)+m2−5m=0.(2(m-1))^2 - 2(m^2 - m - 4) - 2x_2(x_2 - 2) + m^2 - 5m = 0.(2(m−1))2−2(m2−m−4)−2x2(x2−2)+m2−5m=0.
Biến đổi:
4(m−1)2−2(m2−m−4)−2x22+4x2+m2−5m=0.4(m-1)^2 - 2(m^2 - m - 4) - 2x_2^2 + 4x_2 + m^2 - 5m = 0.4(m−1)2−2(m2−m−4)−2x22+4x2+m2−5m=0.
Dùng x22=(x1+x2)2−2x1x2x_2^2 = (x_1 + x_2)^2 - 2x_1x_2x22=(x1+x2)2−2x1x2, thay vào:
4(m−1)2−2(m2−m−4)−2[(2(m−1))2−2(m2−m−4)]+4x2+m2−5m=0.4(m-1)^2 - 2(m^2 - m - 4) - 2[(2(m-1))^2 - 2(m^2 - m - 4)] + 4x_2 + m^2 - 5m = 0.4(m−1)2−2(m2−m−4)−2[(2(m−1))2−2(m2−m−4)]+4x2+m2−5m=0.
Rút gọn:
4(m2−2m+1)−2m2+2m+8−2[4(m2−2m+1)−2m2+2m+8]+4x2+m2−5m=0.4(m^2 - 2m + 1) - 2m^2 + 2m + 8 - 2[4(m^2 - 2m + 1) - 2m^2 + 2m + 8] + 4x_2 + m^2 - 5m = 0.4(m2−2m+1)−2m2+2m+8−2[4(m2−2m+1)−2m2+2m+8]+4x2+m2−5m=0.
Sau khi tiếp tục biến đổi và rút gọn, ta giải phương trình để tìm các giá trị mmm thỏa mãn.
Kết quả cuối cùng là m=3m = 3m=3 (thỏa mãn cả hai điều kiện trên).

a: Xét (\(O_1\)) có
ΔAEH nội tiếp
AH là đường kính
Do đó: ΔAEH vuông tại E
=>HE\(\perp\)AC tại E
Xét \(\left(O_2\right)\) có
ΔHFB nội tiếp
HB là đường kính
Do đó: ΔHFB vuông tại F
=>HF\(\perp\)CB tại F
Xét ΔCHA vuông tại H có HE là đường cao
nên \(CE\cdot CA=CH^2\left(1\right)\)
Xét ΔCHB vuông tại H có HF là đường cao
nên \(CF\cdot CB=CH^2\left(2\right)\)
Từ (1),(2) suy ra \(CE\cdot CA=CF\cdot CB\)
=>\(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
Xét ΔCEF và ΔCBA có
\(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
\(\widehat{ECF}\) chung
Do đó: ΔCEF~ΔCBA
=>\(\widehat{CEF}=\widehat{CBA}\)
mà \(\widehat{CEF}+\widehat{FEA}=180^0\)(hai góc kề bù)
nên \(\widehat{FEA}+\widehat{FBA}=180^0\)
=>AEFB là tứ giác nội tiếp

`3x^2 + 4x - 4 = 0`
`<=> 3x^2 - 2x + 6x - 4 = 0`
`<=> (3x^2 - 2x) + (6x - 4) = 0`
`<=> x (3x - 2) + 2(3x - 2) = 0`
`<=> (x + 2)(3x - 2) = 0`
`<=> x = -2` hoặc `x = 2/3`
Vậy ...
gọi x; y lần lượt là số chi tiết mà tổ 1 và tổ 2 sản xuất trong tháng đầu (ĐK: 0 < x; y < 300)
theo đề 2 tổ sản xuất đc 300 chi tiết nên: x + y = 300 (1)
số chi tiết tổ 1 vượt là: \(x\cdot\left(1+15\%\right)=1,15x\)
số chi tiết tổ 2 vượt là: \(y\cdot\left(1+20\%\right)=1,2y\)
mà cả 2 tổ sản xuất đc 352 chi tiết nên:
\(1,15x+1,2y=352\left(2\right)\)
từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=300\\1,15x+1,2y=352\end{matrix}\right.\)
giải ra ta được: \(\left\{{}\begin{matrix}x=160\left(TM\right)\\y=140\left(TM\right)\end{matrix}\right.\)
vậy tổ 1 sản xuất 160 chi tiết máy trong tháng đầu; tổ 2 sản xuất 140 chi tiết máy trong tháng đầu