K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thông báo quan trọng về công tác thanh tra xét duyệt các cộng tác viên nhiệm kỳ hè năm 2025 Cô Thương Hoài thân ái chào toàn thể các thành viên của Olm. Vậy là mùa hè đã bắt đầu với bao nhiêu cảm xúc bồi hồi, phấn chấn, khắc khoải hoặc có đôi chút tiếc nuối vì những thứ mà các em chưa kịp vươn tới. Nhưng trên đường đời phải trải qua đủ cung bậc của cảm xúc mới...
Đọc tiếp

Thông báo quan trọng về công tác thanh tra xét duyệt các cộng tác viên nhiệm kỳ hè năm 2025

Cô Thương Hoài thân ái chào toàn thể các thành viên của Olm. Vậy là mùa hè đã bắt đầu với bao nhiêu cảm xúc bồi hồi, phấn chấn, khắc khoải hoặc có đôi chút tiếc nuối vì những thứ mà các em chưa kịp vươn tới. Nhưng trên đường đời phải trải qua đủ cung bậc của cảm xúc mới thực sự là cuộc sống. Hãy luôn nỗ lực và cố gắng mỗi ngày để thực hiện hoài bão, các em sẽ thành công. Hẳn rằng giờ đây rất nhiều bạn đang mong ngóng, ước mơ trở thành cộng tác viên của hệ thống giáo dục hàng đầu Việt Nam.

Thực hiện chỉ thị văn bản hồi 22h 53 phút, ngày 27 tháng 06 năm 2025 của giám đốc Olm thầy Hà Đức Thọ. Cô sẽ bắt đầu thanh tra, xét duyệt toàn bộ các ứng viên đã đăng ký ứng tuyển ctv viên hè năm 2025 vừa qua trên Olm. Mọi thành viên có các vấn đề như:

+ Thiếu trung thực khi đăng ký về số câu trả lời,

+ Gian lận điểm số gp, sp.

+ Sử dụng chat gpt để trả lời trên cộng đồng hỏi đáp.

+ Thái độ ứng xử trên cộng đồng tri thức thiếu hòa nhã, kém cởi mở, ít thân thiện và ngôn ngữ chưa được lịch sự văn minh.

+ Có lời nói, bình luận, nhắn tin, đe dọa, dụ dỗ, lôi kéo vào những hành vi thiếu lành mạnh sẽ bị loại khỏi danh sách trúng tuyển cộng tác viên.

Các bạn có đủ tố chất, năng lực, có nhiệt huyết, đam mê, trung thực.. sẽ được trúng tuyển. Chúc các em sẽ có tên trong danh sách trúng tuyển.

5
5 giờ trước (7:42)

Cô ơi cho em đăng kí làm CTV OLM được không ạ?

5 giờ trước (7:42)

Cô ơi cho em làm CTV OLM được không cô ạ?

a: \(A=\left(\frac{x-4}{\sqrt{x}-2}+\frac{x\sqrt{x}-8}{4-x}\right):\frac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\)

\(=\left(\frac{x-4}{\sqrt{x}-2}-\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{x-4\sqrt{x}+4+2\sqrt{x}}{\sqrt{x}+2}\)

\(=\left(\sqrt{x}+2-\frac{x+2\sqrt{x}+4}{\sqrt{x}+2}\right):\frac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\frac{\left(\sqrt{x}+2\right)^2-x-2\sqrt{x}-4}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}=\frac{x+4\sqrt{x}+4-x-2\sqrt{x}-4}{x-2\sqrt{x}+4}=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}\)

b: \(A-1=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}-1=\frac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}=\frac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+1+3}\)

\(=-\frac{\left(x-4\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)^2+3}=\frac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}<0\forall x\) thỏa mãn ĐKXĐ

=>A<1

c: Ta có: \(2\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ

\(x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3\ge3\forall x\)

=>\(A=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}\ge0\forall x\) thỏa mãn ĐKXĐ

=>0<=A<1

Để A là số nguyên thì A=0

=>x=0(nhận)


Bài 1:

\(A=\sqrt{3+\sqrt{5+2\sqrt3}}+\sqrt{3-\sqrt{5+2\sqrt3}}\)

=>\(A^2=3+\sqrt{5+2\sqrt3}+3-\sqrt{5+2\sqrt3}+2\cdot\sqrt{3^2-\left(5+2\sqrt3\right)}\)

=>\(A^2=6+2\cdot\sqrt{9-5-2\sqrt3}=6+2\cdot\sqrt{4-2\sqrt3}\)

=>\(A^2=6+2\sqrt{\left(\sqrt3-1\right)^2}=6+2\left(\sqrt3-1\right)=4+2\sqrt3=\left(\sqrt3+1\right)^2\)

=>\(A=\sqrt3+1\)

Bài 63:

Đặt \(A=\sqrt{4+\sqrt3}+\sqrt{4-\sqrt3}\)

=>\(A^2=4+\sqrt3+4-\sqrt3+2\cdot\sqrt{4^2-3}=8+2\sqrt{13}\)

=>\(A=\sqrt{8+2\sqrt{13}}\)

\(N=\frac{\sqrt{4+\sqrt3}+\sqrt{4-\sqrt3}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt2}\)

\(=\frac{\sqrt{8+2\sqrt{13}}}{\sqrt{4+\sqrt{13}}}+\sqrt{25-2\cdot5\cdot\sqrt2+2}\)

\(=\sqrt2+\sqrt{\left(5-\sqrt2\right)^2}=\sqrt2+5-\sqrt2=5\)

23 tháng 6

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

4: Sửa đề: \(x=\sqrt[3]{3+2\sqrt2}-\sqrt[3]{3-2\sqrt2}\)

=>\(x^3=3+2\sqrt2-\left(3-2\sqrt2\right)+3\cdot x\cdot\sqrt[3]{\left(3+2\sqrt2\right)\left(3-2\sqrt2\right)}\)

=>\(x^3=6+3\cdot x\cdot1=3x+6\)

\(y=\sqrt[3]{17+12\sqrt2}-\sqrt[3]{17-12\sqrt2}\)

=>\(y^3=17+12\sqrt2-\left(17-12\sqrt2\right)-3\cdot y\cdot\sqrt[3]{\left(17+12\sqrt2\right)\left(17-12\sqrt2\right)}\)

=>\(y^3=34-3y\)

\(H=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy+3\right)=\left(x-y\right)\left(x^2+xy+y^2+3\right)\)

\(=\left(x^3-y^3\right)+3\left(x-y\right)\)

=(3x+6-34+3y)+3x-3y

=3x+3y+3x-3y-28

=6x-28

Bài 3:

a: \(A=\sqrt{13+30\cdot\sqrt{2+\sqrt{9+4\sqrt2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt2\cdot1+1}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{\left(2\sqrt2+1\right)^2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\left(2\sqrt2+1\right)}}\)

\(=\sqrt{13+30\cdot\sqrt{2+2\sqrt2+1}}\)

\(=\sqrt{13+30\cdot\sqrt{\left(\sqrt2+1\right)^2}}\)

\(=\sqrt{13+30\cdot\left(\sqrt2+1\right)}=\sqrt{43+30\sqrt2}\)

\(=\sqrt{25+2\cdot5\cdot3\sqrt2+18}=\sqrt{\left(5+3\sqrt2\right)^2}=5+3\sqrt2\)

b: \(B=\frac{3+\sqrt5}{2\sqrt2+\sqrt{3+\sqrt5}}+\frac{3-\sqrt5}{2\sqrt2-\sqrt{3-\sqrt5}}\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{6+2\sqrt5}}+\frac{3-\sqrt5}{4-\sqrt{6-2\sqrt5}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{\left(\sqrt5+1\right)^2}}+\frac{3-\sqrt5}{4-\sqrt{\left(\sqrt5-1\right)^2}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\left(\sqrt5+1\right)^{}}+\frac{3-\sqrt5}{4-\left(\sqrt5-1\right)^{}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt5+1^{}}+\frac{3-\sqrt5}{4-\sqrt5+1^{}}\right)=\sqrt2\left(\frac{3+\sqrt5}{5+\sqrt5^{}}+\frac{3-\sqrt5}{5-\sqrt5^{}}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{2\left(3+\sqrt5\right)}{5+\sqrt5}+\frac{2\left(3-\sqrt5\right)}{5-\sqrt5}\right)=\frac{1}{\sqrt2}\cdot\left(\frac{6+2\sqrt5}{5+\sqrt5}+\frac{6-2\sqrt5}{5-\sqrt5}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{\left(\sqrt5+1\right)^2}{\sqrt5\left(\sqrt5+1\right)}+\frac{\left(\sqrt5-1\right)^2}{\sqrt5\left(\sqrt5-1\right)}\right)=\frac{1}{\sqrt2}\cdot\frac{\sqrt5+1+\sqrt5-1}{\sqrt5}=\frac{1}{\sqrt2}\cdot2=\sqrt2\)

c: \(C=\sqrt{4+\sqrt{10+2\sqrt5}}+\sqrt{4-\sqrt{10+2\sqrt5}}\)

=>\(C^2=4+\sqrt{10+2\sqrt5}+4-\sqrt{10+2\sqrt5}+2\cdot\sqrt{4^2-\left(10+2\sqrt5\right)}\)

=>\(C^2=8+2\cdot\sqrt{16-10-2\sqrt5}=8+2\cdot\sqrt{6-2\sqrt5}\)

=>\(C^2=8+2\cdot\left(\sqrt5-1\right)=6+2\sqrt5=\left(\sqrt5+1\right)^2\)

=>\(C=\sqrt5+1\)

f: \(F=\sqrt[3]{26+15\sqrt3}-\sqrt[3]{26-15\sqrt3}\)

\(=\sqrt[3]{2^3+3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2+3\sqrt3}-\sqrt[3]{2^3-3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2-3\sqrt3}\)

\(=\sqrt[3]{\left(2+\sqrt3\right)^3}-\sqrt[3]{\left(2-\sqrt3\right)^3}=2+\sqrt3-\left(2-\sqrt3\right)=2\sqrt3\)


4: Sửa đề: \(x=\sqrt[3]{3+2\sqrt2}-\sqrt[3]{3-2\sqrt2}\)

=>\(x^3=3+2\sqrt2-\left(3-2\sqrt2\right)+3\cdot x\cdot\sqrt[3]{\left(3+2\sqrt2\right)\left(3-2\sqrt2\right)}\)

=>\(x^3=6+3\cdot x\cdot1=3x+6\)

\(y=\sqrt[3]{17+12\sqrt2}-\sqrt[3]{17-12\sqrt2}\)

=>\(y^3=17+12\sqrt2-\left(17-12\sqrt2\right)-3\cdot y\cdot\sqrt[3]{\left(17+12\sqrt2\right)\left(17-12\sqrt2\right)}\)

=>\(y^3=34-3y\)

\(H=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy+3\right)=\left(x-y\right)\left(x^2+xy+y^2+3\right)\)

\(=\left(x^3-y^3\right)+3\left(x-y\right)\)

=(3x+6-34+3y)+3x-3y

=3x+3y+3x-3y-28

=6x-28

Bài 3:

a: \(A=\sqrt{13+30\cdot\sqrt{2+\sqrt{9+4\sqrt2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt2\cdot1+1}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{\left(2\sqrt2+1\right)^2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\left(2\sqrt2+1\right)}}\)

\(=\sqrt{13+30\cdot\sqrt{2+2\sqrt2+1}}\)

\(=\sqrt{13+30\cdot\sqrt{\left(\sqrt2+1\right)^2}}\)

\(=\sqrt{13+30\cdot\left(\sqrt2+1\right)}=\sqrt{43+30\sqrt2}\)

\(=\sqrt{25+2\cdot5\cdot3\sqrt2+18}=\sqrt{\left(5+3\sqrt2\right)^2}=5+3\sqrt2\)

b: \(B=\frac{3+\sqrt5}{2\sqrt2+\sqrt{3+\sqrt5}}+\frac{3-\sqrt5}{2\sqrt2-\sqrt{3-\sqrt5}}\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{6+2\sqrt5}}+\frac{3-\sqrt5}{4-\sqrt{6-2\sqrt5}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{\left(\sqrt5+1\right)^2}}+\frac{3-\sqrt5}{4-\sqrt{\left(\sqrt5-1\right)^2}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\left(\sqrt5+1\right)^{}}+\frac{3-\sqrt5}{4-\left(\sqrt5-1\right)^{}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt5+1^{}}+\frac{3-\sqrt5}{4-\sqrt5+1^{}}\right)=\sqrt2\left(\frac{3+\sqrt5}{5+\sqrt5^{}}+\frac{3-\sqrt5}{5-\sqrt5^{}}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{2\left(3+\sqrt5\right)}{5+\sqrt5}+\frac{2\left(3-\sqrt5\right)}{5-\sqrt5}\right)=\frac{1}{\sqrt2}\cdot\left(\frac{6+2\sqrt5}{5+\sqrt5}+\frac{6-2\sqrt5}{5-\sqrt5}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{\left(\sqrt5+1\right)^2}{\sqrt5\left(\sqrt5+1\right)}+\frac{\left(\sqrt5-1\right)^2}{\sqrt5\left(\sqrt5-1\right)}\right)=\frac{1}{\sqrt2}\cdot\frac{\sqrt5+1+\sqrt5-1}{\sqrt5}=\frac{1}{\sqrt2}\cdot2=\sqrt2\)

c: \(C=\sqrt{4+\sqrt{10+2\sqrt5}}+\sqrt{4-\sqrt{10+2\sqrt5}}\)

=>\(C^2=4+\sqrt{10+2\sqrt5}+4-\sqrt{10+2\sqrt5}+2\cdot\sqrt{4^2-\left(10+2\sqrt5\right)}\)

=>\(C^2=8+2\cdot\sqrt{16-10-2\sqrt5}=8+2\cdot\sqrt{6-2\sqrt5}\)

=>\(C^2=8+2\cdot\left(\sqrt5-1\right)=6+2\sqrt5=\left(\sqrt5+1\right)^2\)

=>\(C=\sqrt5+1\)

f: \(F=\sqrt[3]{26+15\sqrt3}-\sqrt[3]{26-15\sqrt3}\)

\(=\sqrt[3]{2^3+3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2+3\sqrt3}-\sqrt[3]{2^3-3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2-3\sqrt3}\)

\(=\sqrt[3]{\left(2+\sqrt3\right)^3}-\sqrt[3]{\left(2-\sqrt3\right)^3}=2+\sqrt3-\left(2-\sqrt3\right)=2\sqrt3\)


Mk 2k12 nèv,cũng học khá toán :)

21 tháng 6

Olm chào em, học nhóm online cũng là một phương pháp hay để chia sẻ cách học, các kiến thức, bổ trợ cho nhau các kỹ năng học và luyện tiếng Anh một cách hiệu quả.

20 tháng 6

Which = có dấu phẩy (,) (thông tin bổ sung)

That = không có dấu phẩy (,) (thông tin cần thiết)

  • Which: Dùng trong mệnh đề quan hệ không xác định (non-defining relative clause). Mệnh đề này cung cấp thông tin thêm, không cần thiết để xác định danh từ. Nó luôn được ngăn cách bởi dấu phẩy (,).
    • Ví dụ: My car, which is red, needs washing. (Xe của tớ, cái mà màu đỏ, cần rửa.)
  • That: Dùng trong mệnh đề quan hệ xác định (defining relative clause). Mệnh đề này cung cấp thông tin cần thiết để xác định danh từ. Nó không được ngăn cách bởi dấu phẩy (, ).
    • Ví dụ: The car that is parked over there is mine. (Chiếc xe đang đậu đằng kia là của tớ.) -Sưu tầm trên internet


Kẻ OF⊥CD tại F. Gọi E là giao điểm của OF và AB. Gọi H là giao điểm của AB và OM

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra OM là đường trung trực của AB

=>OM⊥AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=R^2\left(3\right)\)

Xét ΔOFM vuông tại F và ΔOHE vuông tại H có

\(\hat{FOM}\) chung

Do đó: ΔOFM~ΔOHE

=>\(\frac{OF}{OH}=\frac{OM}{OE}\)

=>\(OF\cdot OE=OH\cdot OM\left(4\right)\)

Từ (3),(4) suy ra \(OF\cdot OE=R^2=OD^2\)

=>\(\frac{OF}{OD}=\frac{OD}{OE}\)

Xét ΔOFD và ΔODE có

\(\frac{OF}{OD}=\frac{OD}{OE}\)

\(\hat{FOD}\) chung

Do đó: ΔOFD~ΔODE

=>\(\hat{OFD}=\hat{ODE}\)

=>\(\hat{ODE}=90^0\)

=>ED là tiếp tuyến của (O)

ΔOCD cân tại O

mà OF là đường cao

nên OF là phân giác của góc COD

Xét ΔODE và ΔOCE có

OD=OC

\(\hat{DOE}=\hat{COE}\)

OE chung

Do đó: ΔODE=ΔOCE

=>\(\hat{ODE}=\hat{OCE}\)

=>\(\hat{OCE}=90^0\)

=>EC là tiếp tuyến tại C của (O)

Do đó: AB,hai tiếp tuyến tại D và C của (O) đồng quy tại E

Bài 5:

a: ĐKXĐ: x≠-2

Ta có: \(1+\frac{1}{x+2}=\frac{12}{x^3+8}\)

=>\(1+\frac{1}{x+2}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)

=>\(\frac{x^3+8}{\left(x+2\right)\left(x^2-2x+4\right)}+\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)

=>\(x^3+8+x^2-2x+4=12\)

=>\(x^3+x^2-2x=0\)

=>\(x\left(x^2+x-2\right)=0\)

=>x(x+2)(x-1)=0

=>\(\left[\begin{array}{l}x=0\\ x+2=0\\ x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(nhận\right)\\ x=-2\left(loại\right)\\ x=1\left(nhận\right)\end{array}\right.\)

b: ĐKXĐ: x<>2/7

Ta có: \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)

=>\(\left(2x+3\right)\cdot\frac{3x+8+2-7x}{2-7x}=\left(x-5\right)\cdot\frac{3x+8+2-7x}{2-7x}\)

=>\(\left(2x+3\right)\cdot\frac{-4x+10}{2-7x}=\left(x-5\right)\cdot\frac{-4x+10}{2-7x}\)

=>\(\left(2x+3\right)\left(-4x+10\right)-\left(x-5\right)\left(-4x+10\right)=0\)

=>(-4x+10)(2x+3-x+5)=0

=>-2(2x-5)(x+8)=0

=>(2x-5)(x+8)=0

=>\(\left[\begin{array}{l}2x-5=0\\ x+8=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac52\left(nhận\right)\\ x=-8\left(nhận\right)\end{array}\right.\)

Bài 4:

a: ĐKXĐ: x∉{2;-1}

Ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

=>\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x-2\right)\left(x+1\right)}+1\)

=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}\)

=>(x-2)(x+2)+3(x+1)=3+(x-2)(x+1)

=>\(x^2-4+3x+3=3+x^2-x-2\)

=>3x-1=-x+1

=>4x=2

=>\(x=\frac12\) (nhận)

b: ĐKXĐ: x∉{5;-6}

Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

=>2x+61=23x+61

=>-21x=0

=>x=0(nhận)

Bài 3:

a: ĐKXĐ: x∉{5;-6}

Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

=>2x+61=23x+61

=>-21x=0

=>x=0(nhận)

b: ĐKXĐ: x∉{3;-3}

Ta có: \(\frac{x^2-x}{x+3}-\frac{x_{}^2}{x-3}=\frac{7x^2-3x}{9-x^2}\)

=>\(\frac{\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-7x^2+3x}{\left(x-3\right)\left(x+3\right)}\)

=>\(\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=-7x^2+3x\)

=>\(x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x=0\)

=>0x=0(luôn đúng)

Vậy: x∉{3;-3}

Bài 2:

a: ĐKXĐ: x∉{-1;2}

ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3+x^2-x-2}{\left(x-2\right)\left(x+1\right)}\)

=>\(\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=x^2-x+1\)

=>\(x^2-4+3x+3=x^2-x+1\)

=>3x-1=-x+1

=>4x=2

=>\(x=\frac12\) (nhận)

b: ĐKXĐ: x∉{0;2}

ta có: \(\frac{5-x}{4x^2-8x}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)

=>\(\frac{5-x}{4x\left(x-2\right)}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)

=>\(\frac{4\left(5-x\right)}{16x\left(x-2\right)}+\frac{7\cdot2x\cdot\left(x-2\right)}{8\cdot2x\cdot\left(x-2\right)}=\frac{8\left(x-1\right)}{8\cdot2x\cdot\left(x-2\right)}+\frac{2x}{8\cdot2x\cdot\left(x-2\right)}\)

=>4(5-x)+14x(x-2)=8(x-1)+2x

=>\(20-4x+14x^2-28x=8x-8+2x\)

=>\(14x^2-32x+20-10x+8=0\)

=>\(14x^2-42x+28=0\)

=>\(x^2-3x+2=0\)

=>(x-2)(x-1)=0

=>x=2(loại) hoặc x=1(nhận)

Bài 1:

a: ĐKXĐ: x∉{1/4;-1/4}

ta có: \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{6x+8}{16x^2-1}\)

=>\(\frac{-3}{4x-1}-\frac{2}{4x+1}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)

=>\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)

=>-3(4x+1)-2(4x-1)=-6x-8

=>-12x-3-8x+2=-6x-8

=>-20x-1=-6x-8

=>-14x=-7

=>x=1/2(nhận)

b: ĐKXĐ: x∉{1/5;3/5}

Ta có: \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)

=>\(\frac{3}{5x-1}-\frac{2}{5x-3}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)

=>\(\frac{3\left(5x-3\right)}{\left(5x-1\right)\left(5x-3\right)}-\frac{2\left(5x-1\right)}{\left(5x-1\right)\left(5x-3\right)}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)

=>3(5x-3)-2(5x-1)=-4

=>15x-9-10x+2=-4

=>5x-7=-4

=>5x=3

=>x=3/5(loại)