(√m+1)x^2 - 2 (√m+1)x + 1 = 0 tìm m để phương trình có 2 nghiệm phân biệt (m là một thanh số)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=4x^2y\cdot\left(-3xy^2\right)\)
\(=4\cdot\left(-3\right)\cdot x^2\cdot x\cdot y\cdot y^2\)
\(=-12x^3y^3\)

Câu a:
(1299 - 259) : 13
= 1040 : 13
= 1040
Câu b:
(2020 + 20192018): 2019
=[2019 + (20192018 + 1)] : 2019
= [2019 + 20192019] : 2019
= 2019 : 2019 + 20192019 : 2019
= 1 + 10001
= 10002

Tổng độ dài hai đáy là:
\(243,75\times2:12,5=39\left(cm\right)\)
Độ dài đáy lớn là \(\dfrac{39+9}{2}=\dfrac{48}{2}=24\left(cm\right)\)
Độ dài đáy bé là 24-9=15(cm)

Chúng ta cần tìm giá trị lớn nhất và giá trị nhỏ nhất của hai hàm số đã chọn. ### **Câu a: \( F = \frac{2x + 3}{x^2 + 4} \)** #### **Bước 1: Tìm đạo hàm của \( F \)** Gọi: \[ F(x) = \frac{2x + 3}{x^2 + 4} \] Đạo hàm của \( F(x) \) theo quy tắc kinh tế: \[ F'(x) = \frac{(2)(x^2+4) - (2x+3)(2x)}{(x^2+4)^2} \] \[ = \frac{2x^2 + 8 - (4x^2 + 6x)}{(x^2+4)^2} \] \[ = \frac{-2x^2 - 6x + 8}{(x^2+4)^2} \] #### **Bước 2: Tìm các điểm cực trị** Phương pháp giải thích: \[ -2x^2 - 6x + 8 = 0 \] Chia hai vế cho -2: \[ x^2 + 3x - 4 = 0 \] \[ (x + 4)(x - 1) = 0 \] \[ x = -4, x = 1 \] #### **Bước 3: chắc hạn tại \( x \to \pm\infty \)** \[ \lim_{x \to \pm\infty} F(x) = 0 \] #### **Bước 4: Tính giá trị của \( F(x) \) tại các cực trị và một số điểm đặc biệt**### **Câu a: Tìm giá trị lớn nhất, nhỏ nhất của \( F = \frac{2x + 3}{x^2 + 4} \)** #### **Bước 1: Tìm đạo hàm của \( F(x) \)** Sử dụng quy tắc đạo hàm của một phân thức: \[ F(x) = \frac{2x + 3}{x^2 + 4} \] áp dụng công thức: \[ F'(x) = \frac{(2)(x^2 + 4) - (2x + 3)(2x)}{(x^2 + 4)^2} \] \[ = \frac{2x^2 + 8 - (4x^2 + 6x)}{(x^2 + 4)^2} \] \[ = \frac{-2x^2 - 6x + 8}{(x^2 + 4)^2} \] #### **Bước 2: Tìm các cực trị** Giải thích phương trình \( F'(x) = 0 \): \[ -2x^2 - 6x + 8 = 0 \] Chia hai vế cho -2: \[ x^2 + 3x - 4 = 0 \] Phân tích thành nhân tử: \[ (x + 4)(x - 1) = 0 \] \[ x = -4, x = 1 \] #### **Bước 3: dừng giới hạn tại \( x \to \pm\infty \)** \[ \lim_{x \to \pm\infty} F(x) = 0 \] Do đó đồ thị có đỉnh ngang là \( y = 0 \). #### **Bước 4: Tính giá trị của \( F(x) \) tại các cực trị** \[ F(-4) =

gọi x là số tự nhiên nhỏ nhất cần tìm
3 số tự nhiên liên tiếp mà tổng của chúng là 1107 nên:
x + (x + 1) + (x + 2) = 1107
x + x + 1 + x + 2 = 1107
3x = 1104 => x = 368
vậy số tự nhiên nhỏ nhất trong 3 số tự nhiên liêp tiếp đó là 368

Tỉ số phần trăm của lượng muối có trong nước biển là:
\(1,4:40=14:400=7:200=3,5\%\)
Bạn nam có một số bi số bi xanh gấp 6 lần số bi đot . Nếu nam có thêm 6 voeen bi đỏ nx thì số bi xanh gấp 4 lần số bi đỏ. Hổ lúc đầu nam có mấy viên bi đỏ

Giải:
Vì 100 : 5 = 20
Vậy số lớn nhất nhỏ hơn 100 chia 5 dư 3 là số:
100 - (5 - 3) = 98
Đáp số: 98

Olm chào em, em cần đăng đầy đủ nội dung câu hỏi đó lên trên n này thì thầy cô mới có thể giải thích cho em tại sao lại có dòng:
- 4 x 1 x 2 em nhé.

Olm chào em, hiện tại câu hỏi của em chưa iển thị đấy có thể là do file mà em tải lên bị lỗi nên đã không hiển thị trên diễn đàn. Em nên viết đề bài trực tiếp trên Olm. Như vậy em sẽ không mắc phải lỗi file đề. Điều này giúp em nhanh chóng nhận được sự trợ giúp từ cộng đồng olm. Cảm ơn em đã đồng hành cùng Olm.
Để phương trình là phương trình bậc hai thì \(\sqrt{m}>=0\)
=>m>=0
Để phương trình có hai nghiệm phân biệt thì \(\left[-2\left(\sqrt{m}+1\right)\right]^2-4\left(\sqrt{m}+1\right)>0\)
=>\(4\left(m+2\sqrt{m}+1\right)-4\left(\sqrt{m}+1\right)>0\)
=>\(4\left(m+\sqrt{m}\right)>0\)(luôn đúng khi m>=0)
Điều kiện: `m >= 0`
Phương trình đã cho có 2 nghiệm phân biệt
`<=> Δ' > 0`
`<=> (sqrt{m} + 1)^2 - (sqrt{m} + 1).1 > 0`
`<=> m^2 + 2sqrt{m} + 1 - sqrt{m} - 1 > 0`
`<=> m^2 + sqrt{m} >= 0` (Thỏa mãn với mọi `m >= 0)`