Nếu bốn số tự nhiên liên tiếp có tổng bằng \(3314\) thì số tự nhiên nhỏ nhất trong các số đó là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!


Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

B = 1 + 2\(^2\) + 2\(^4\) + ... + 2\(^{2024}\) + 2\(^{2026}\)
2\(^2\) B = 2\(^2\) + 2\(^4\) + ...+ \(2^{2026}\) + 2\(^{2028}\)
4B - B = 2\(^2\) + 2\(^4\) + ...+ \(2^{2026}\) + 2\(^{2028}\) - 1 - 2\(^2\) - 2\(^4\) - ... - 2\(^{2024}\) - 2\(^{2026}\)
3B = (2\(^2\) - 2\(^2\)) + (2\(^4\) - 2\(^4\)) +...+ (2\(^{2026}\) - \(2^{2026}\)) + (2\(^{2028}\) - 1)
3B = 0 + 0 +... + 0 + 2\(^{2028}\) - 1
3B = 2\(^{2028}\) - 1
B = \(\frac{2^{2028}-1}{3}\)
Ta có: \(B=1+2^2+2^4+\cdots+2^{2024}+2^{2026}\)
=>\(4B=2^2+2^4+2^6+\ldots+2^{2026}+2^{2028}\)
=>\(4B-B=2^2+2^4+2^6+\cdots+2^{2026}+2^{2028}-1-2^2-\cdots-2^{2026}\)
=>\(3B=2^{2028}-1\)
=>\(B=\frac{2^{2028}-1}{3}\)

Bạn đăng câu hỏi 1 lần cho cùng 1 nội dung thôi nha, bạn kiểm tra lại câu hỏi trước đó nhé.
Giải:
Gọi số tự nhiên thứ nhất thỏa mãn đề bài là \(x\) (\(x\in N\))
Thì số thứ hai, thứ ba, thứ tư lần lượt là:
\(x+1;x+2;x+3\)
Theo bài ra ta có:
\(x+x+1+x+2+x+3\) = 3314
(\(x+x+x+x\)) + (1+ 2+ 3) = 3314
4\(x\) + (3 + 3) = 3314
4\(x\) + 6 = 3314
4\(x\) = 3314 - 6
4\(x\) = 3308
\(x=3308:4\)
\(x\) = 827
Vậy số tự nhiên nhỏ nhất thỏa mãn đề bài là 827
Cách giải:
Bốn số liên tiếp là:
\(x , \textrm{ }\textrm{ } x + 1 , \textrm{ }\textrm{ } x + 2 , \textrm{ }\textrm{ } x + 3\)
\(x + \left(\right. x + 1 \left.\right) + \left(\right. x + 2 \left.\right) + \left(\right. x + 3 \left.\right) = 3314\)
\(4 x + 6 = 3314\)
\(4 x = 3314 - 6 = 3308\) \(x = \frac{3308}{4} = 827\)