K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

Giải

Ta có: \(A\left(x\right)=4x^2+6x+10\)

\(\Rightarrow A\left(x\right)=4x^2+4.\frac{3}{2}x+4.\frac{5}{2}\)(Biến tất cả các hạng tử sao cho có nhân tử chung là 4 để làm mất hệ số 4 ở x^2)

\(\Rightarrow A\left(x\right)=4\left(x^2+\frac{3}{2}x+\frac{5}{2}\right)\)(Đấy, thấy số 4 đã ra ngoài chưa)

\(\Rightarrow A\left(x\right)=4\left(x^2+2.\frac{3}{4}x+\frac{9}{16}+\frac{31}{16}\right)\)

(Giờ đây ta lại biến đổi sao cho có hằng đẳng thức và mình đã tách 5/2 thành 9/16 + 31/16)

\(\Rightarrow A\left(x\right)=4\left\{\left[x^2+2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2\right]+\frac{31}{16}\right\}\)(Cho vào trong ngoặc dễ thấy đc hằng đẳng thức)

\(\Rightarrow A\left(x\right)=4\left[\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\right]\)(Đã sử dụng hằng đẳng thức \(A^2+2AB+B^2=\left(A+B\right)^2\))

Vì \(\left(x+\frac{3}{4}\right)^2\ge0\)(đây là điều hiển nhiên, bình phương của một số luôn lớn hơn hoặc bằng 0)

Nên \(\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\ge\frac{31}{16}\)

\(\Rightarrow A\left(x\right)=4\left[\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\right]\ge\frac{31}{4}\)(Nhân thêm 4 vào cả hai vế)

[A(x) sẽ nhỏ nhất nếu dấu lớn hơn hoặc bằng chuyển thành dấu bằng)]

Dấu "=" xảy ra khi và chỉ khi \(\left(x+\frac{3}{4}\right)^2=0\Leftrightarrow x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{4}\)

\(\text{Vậy giá trị nhỏ nhất của A(x) là } \dfrac{31}4 \text{khi và chỉ khi } x=-\dfrac34 \)

30 tháng 12 2021

a) Ta có: N, P lần lượt là trung điểm của CA; CB 

=> NP là đường trung bình của tam giác CAB với đáy AB

=> NP // = 1212AB (1)

mà M là trung điểm AB  => AM = MB = 1212AB  (2)

Từ (1); (2) => NP // = MB 

=> BMNP là hình bình hành.

b. Từ (1) ; (2) => AMPN là hình bình hành

mà hbh AMPN có 1 góc vg nên                                                                => AMPN là hình chữ nhật