Bài 3. Cho tam giác ABC có BC = a, AC = b, AB = c. Chứng minh rằng:
sin\(\dfrac{A}{2}\)≤\(\dfrac{a}{b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nửa chu vi sân trường là 142:2=71(m)
Chiều dài sân trường là (71+13):2=84:2=42(m)
Chiều rộng sân trường là 42-13=29(m)
Diện tích sân trường là:
42x29=1218(m2)
Xét ΔAHC vuông tại H có \(tanC=\dfrac{AH}{HC}\)
=>\(\dfrac{8}{HC}=tan45=1\)
=>HC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB\cdot8=8^2\)
=>HB=8(cm)
BC=BH+CH=8+8=16(cm)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AC=\sqrt{8^2+8^2}=8\sqrt{2}\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB=\sqrt{8^2+8^2}=8\sqrt{2}\left(cm\right)\)
x<17,2<y
mà x,y là các số tự nhiên chẵn
nên (x,y)\(\in\left\{0;18\right\}\)
`17,2 > x `
`=> x` là `0;2;4;...;14` hoặc `16`
`17,2 < y`
`=> y` là `18;20;22`;.... (vô hạn)
Điều kiện \(\overline{9,2x8}\)\(>\)\(92,78\) do đó \(x\)có 1 chữ số
\(\Rightarrow x\)\(=\)\(8;9\)
Thay vào ta đc:\(9,288;9,298\)
Vậy \(x\)\(=\)\(8;9\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(\dfrac{AC}{15}=\dfrac{3}{5}\)
=>\(AC=15\cdot\dfrac{3}{5}=9\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)
Tam giác `ABC` vuông tại `A`
`=> AC = BC . sinB = 15 . 3/5 = 9 (cm)`
Và `AB =` \(\sqrt{BC^2-AC^2}=\sqrt{15^2-9^2}=\sqrt{144}=12\) `(cm)`
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}\)
=>\(\dfrac{AC}{AB}=\sqrt{3}\)
=>\(\dfrac{AC^2}{AB^2}=3\)
=>\(AC^3=3AB^2\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(4\cdot AB^2=2^2=4\)
=>\(AB^2=1\)
=>AB=1(cm)
=>\(AC=1\cdot\sqrt{3}=\sqrt{3}\left(cm\right)\)
`556^2 - 553 . 559 `
`= 556^2 - (556 - 3) . (556 + 3) `
`= 556^2 - (556^2 - 3^2)`
`= 556^2 - 556^2 + 9`
`= 0 + 9`
= 9
`456^2 + 456 . 88 + 44^2`
`= 456^2 + 456 . 88 + 44^2`
`= 456^2 + 2 .456 . 4 + 44^2`
`= (456 + 44)^2`
`= 500^2`
`= 250000`
--------------------------------
Áp dụng các HDT sau nhé:
`(a+b)^2 = a^2 + 2ab + b^2`
`a^2 - b^2 = (a+b)(a-b)`