Giải giúp mình với: An có một số kẹo thành 18 phần bằng nhau thì dư 6 cái .Hỏi với số kẹo đó An có thể đưa thành 3 phần bằng nhau ko ? Vì sao? ( hướng dẫn: Gọi số kẹo của An là a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 3 chia hết cho n
Mà: n chia hết cho n
=> 3 chia hết cho n
=> n ∈ Ư(3)
=> n ∈ {1; -1; 3; -3}
\(1/\left(x+5\right)\left(x^2-4\right)=0\\ TH1:x+5=0\\ =>x=-5\\ TH2:x^2-4=0\\ =>x^2=4\\ =>x^2=\left(\pm2\right)^2\\ =>x=\pm2\\ 2/3x-10=2x+13\\ =>3x-2x=13+10\\ =>x=23\\ 3/3\left(4-x\right)-2\left(x-1\right)=x+2\\ =>12-3x-2x+2=x+2\\ =>14-5x=x+2\\ =>x+5x=14-2\\ =>6x=12\\ =>x=\dfrac{12}{6}=2\\ 4/2\left(x-1\right)+3\left(x-2\right)=x-4\\ =>2x-2+3x-6=x-4\\ =>5x-8=x-4\\ =>5x-x=-4+8\\ =>4x=4\\ =>x=\dfrac{4}{4}=1\\ 5/4\left(2x+7\right)-3\left(3x-2\right)=24\\ =>8x+28-9x+6=24\\ =>34-x=24\\ =>x=34-24=10\\ 6/6x+23=2x-12\\ =>6x-2x=-12-23\\ =>4x=-35\\ =>x=\dfrac{-35}{4}\)
\(\left(1+2+3+...+100\right)\left(1^2+2^2+3^2+...+100^2\right)\left(65\cdot111-13\cdot15\cdot37\right)\)
\(=\left(1+2+...+100\right)\left(1^2+2^2+...+100^2\right)\left[13\cdot37\left(5\cdot3-15\right)\right]\)
=0
a: \(A=1+2+2^2+...+2^{100}\)
=>\(2A=2+2^2+2^3+...+2^{101}\)
=>\(2A-A=2+2^2+...+2^{101}-1-2-...-2^{100}\)
=>\(A=2^{101}-1\)
b: Đặt \(B=5+5^3+...+5^{99}\)
=>\(25B=5^3+5^5+...+5^{101}\)
=>\(25B-B=5^3+5^5+...+5^{101}-5-5^3-...-5^{99}\)
=>\(24B=5^{101}-5\)
=>\(B=\dfrac{5^{101}-5}{24}\)
\(\left[\left(6x-12\right):3\right].32=64\)
\(\left(6x-12\right):3=64:32\)
\(\left(6x-12\right):3=2\)
\(6x-12=2.3\)
\(6x-12=6\)
\(6x=12+6\)
\(6x=18\)
\(x=18:3\)
\(x=6\)
\(\left[\left(6x-12\right):3\right]\cdot2^5=64\)
=>\(\left(2x-4\right)=\dfrac{64}{2^5}=2\)
=>2x=4+2=6
=>\(x=\dfrac{6}{2}=3\)
\(54=3^3\cdot2;36=2^2\cdot3^2;60=2^2\cdot3\cdot5\)
=>ƯCLN(54;60;36)=3*2=6
Muốn chia 54 quyển vở; 36 bút bi, 60 cuốn sách thành một số phần thưởng như nhau thì số phần thưởng nhiều nhất sẽ là ƯCLN(54;60;36)=6 phần thưởng
\(3xy+x+3y+1=5\)
\(x\left(3y+1\right)+\left(3y+1\right)=5\)
\(\left(3y+1\right)\left(x+1\right)=5\)
Ta có bảng:
x+1 | -5 | -1 | 1 | 5 |
3y+1 | -1 | -5 | 5 | 1 |
x | -6 | -2 | 0 | 4 |
y | -2/3 | -2 | 4/3 | 0 |
Do x;y nguyên nên \(\left(x;y\right)=\left(-2;-2\right);\left(4;0\right)\)
Gọi số nguyên tố là p
Vì p là số lẻ nên p ≥ 3
Nếu p = 3 ta có p = 4k + 3 (với k = 0)
Nếu p > 3 khi đó p = 4k + 1; 4k + 2; 4k + 3
Nếu p = 4k + 2 ⇒ p = 2.(k + 1) ⋮ 2 (là hợp số loại)
Từ những lập luận trên ta có với mọi số nguyên tố lẻ thì luôn có dạng
P = 4k + 1 hoặc p = 4k + 3
a: 3x=2y
=>\(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=10
nen Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\)
=>\(x=2\cdot2=4;y=2\cdot3=6\)
b: \(\dfrac{x-2}{y+3}=\dfrac{8}{12}=\dfrac{2}{3}\)
=>3x-6=2y+6
=>3x-2y=12
y-x=-4
=>x=y-(-4)=y+4
3x-2y=12
=>3(y+4)-2y=12
=>3y+12-2y=12
=>y=0
x=y+4=0+4=4
c: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+2y=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+2y}{2+5\cdot2}=\dfrac{12}{12}=1\)
=>x=2;y=5
An chia số kẹo đó thành 18 phần thì dư 6 phần
=> số kẹo của An chia 18 dư 6
=> Số kẹo của An có dạng 18k + 6
Ta có: `18k+6=3*6k+3*2=3*(6k+2)`
=> Số kẹo của An chia hết cho 3
=> Có thể chia thành 3 phần