Tam giác nguyên là tam giác có độ dài các cạnh là các số nguyên
Không tinh đến đơn vị đo, hãy tìm tất cả các tam giác nguyên có chu vi bằng diện tích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Các phân số đó là:
\(\frac{10}{67};\frac{5}{33};\frac{1}{6};\frac{1}{7};\frac{2}{15}\)
\(\frac{2}{13}< ...< ...< ...< ...< ...< \frac{5}{17}\)
\(\frac{10}{65}< ...< ...< ...< ...< ...< \frac{10}{34}\)
Vậy : ta có 5/32;10/63;5/31;10/61;1/6
\(\left(\frac{1}{2}+\frac{4}{5}-\frac{4}{3}\right)\cdot\left(\frac{23}{10}+\frac{107}{25}-\frac{18}{10}\right)\)
\(=\left(\frac{15}{30}+\frac{24}{30}-\frac{40}{30}\right)\cdot\left(\frac{230}{100}+\frac{428}{100}-\frac{180}{100}\right)\)
\(=-\frac{1}{30}\cdot\frac{11}{2}\)
\(=-\frac{11}{60}\)
Góc β: Góc giữa B', C, A Góc β: Góc giữa B', C, A Góc γ: Góc giữa B'', C, B' Góc γ: Góc giữa B'', C, B' Góc δ: Góc giữa B, C, E Góc δ: Góc giữa B, C, E Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng l: Đoạn thẳng [C, D] Đoạn thẳng m: Đoạn thẳng [E, C] Đoạn thẳng p: Đoạn thẳng [D, H] Đoạn thẳng r: Đoạn thẳng [E, K] B = (-0.89, 7.08) B = (-0.89, 7.08) B = (-0.89, 7.08) A = (-0.9, 2.2) A = (-0.9, 2.2) A = (-0.9, 2.2) Điểm C: Điểm trên g Điểm C: Điểm trên g Điểm C: Điểm trên g Điểm E: Giao điểm của k, f Điểm E: Giao điểm của k, f Điểm E: Giao điểm của k, f Điểm D: Giao điểm của j, f Điểm D: Giao điểm của j, f Điểm D: Giao điểm của j, f Điểm H: Giao điểm của n, m Điểm H: Giao điểm của n, m Điểm H: Giao điểm của n, m Điểm K: Giao điểm của q, i Điểm K: Giao điểm của q, i Điểm K: Giao điểm của q, i
Kẻ \(DH⊥EC\left(H\in EC\right)\)
Khi đó do \(\widehat{ACD}=\widehat{HCD}\left(gt\right)\Rightarrow\Delta ACD=\Delta HCD\) (Cạnh huyền góc nhọn)
Vậy nên AD = HD (Hai cạnh tương ứng)
Lại thấy HD là đường vuông góc, DE lại là đường xiên nên DH < DE hay AD < DE.
Tương tự, kẻ \(EK⊥BC\left(K\in BC\right)\)
Ta cũng chứng minh được DE = EK < EB.
Vậy thì AD < DE < EB (đpcm).
Ta có:
A=\(1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1\)
\(=2\left(1+2+3+...+\left(n-1\right)\right)+n\)
\(=2\left(\frac{\left(n-1\right)\cdot\left(n-1+1\right)}{2}\right)+n\)
\(=2\cdot\left(\frac{n\cdot\left(n-1\right)}{2}\right)+n\)
\(=n\left(n-1\right)+n=n\left(n-1+1\right)=n^2\)
Vậy \(\sqrt{A}=\sqrt{n^2}=n\)
Ta có :
A = 1 + 2 + 3 + ... + ( n - 1 ) + n + ( n - 1 ) + ... + 3 + 2 + 1
= 2 ( 1 + 2 + 3 + ... + ( n - 1 ) + n
= 2 ( n . ( n - 1 ) /2 ) + n
= n ( n - 1 ) + n = n ( n - 1 + 1 ) = n2
Vậy \(\sqrt{A}=\sqrt{n^2}=n\)
Số vô tỉ là số thực không phải là số hữu tỉ nghĩa là không thể biểu diễn được dưới dạng tỉ số . Tập hợp số vô tỉ có kí hiệu là:II
II = { x|x \(\ne\)\(\frac{m}{n}\)\(\forall m\)\(\in Z\),\(\forall n\)\(\in Z\cdot\)}
Ví dụ số thập phân vô hạn : 0,00000000000000100000000000000000000......(là số vô hạn không tuần hoàn)
Căn bậc hai của 2. Giả sử rằng là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a / b = . Như vậy có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọn được nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.
Đề bài này nên là các tam giác vuông
các tam giác là (3,4,5);(5,12,13)
Gọi x,y,zx,y,z là các cạnh của tam giác vuông (1≤x≤y<z)(1≤x≤y<z). Ta có :
x2+y2=z2(1)x2+y2=z2(1)
xy=2(x+y+z)(2)xy=2(x+y+z)(2)
Từ (1)(1) ta có :
z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4
⇒(x+y−2)2=(z+2)2⇒(x+y−2)2=(z+2)2
⇒x+y−2=z+2(x+y≥2)⇒x+y−2=z+2(x+y≥2)
Thay z=x+y−4z=x+y−4 vào (2)(2) ta được :
(x−4)(y−4)=8(x−4)(y−4)=8
⇔x−4=1;y−4=8⇔x−4=1;y−4=8 hoặc x−4=2;y−4=4x−4=2;y−4=4
⇔x=5;y=12⇔x=5;y=12 hoặc x=6;y=8