Cho tam giác $A B C$ có trung tuyên $A M$. Gọi $I$ là trung điếm của $A M$ và $K$ là điếm trên cạnh $A C$ sao cho $A K=\dfrac{1}{3} A C$. Chứng minh rằng ba điểm $B, I, K$ thẳng hàng. Ta có $\overrightarrow{B I}=\dfrac{1}{2}(\overrightarrow{B A}+\overrightarrow{B M})=\dfrac{1}{2}\left(\overrightarrow{B A}+\dfrac{1}{2} \overrightarrow{B C}\right)$
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
28 tháng 3 2022
TL:
Đáp án:
\(\text{KD = KA + AD = - AK + AD }\)
\(=-\frac{1}{2}\left(AM+AN\right)+\frac{1}{2}\left(AB+AC\right)\)
\(=-\frac{1}{2}\left(\frac{1}{2}AB+\frac{2}{3}AC\right)+\frac{1}{2}AB+\frac{1}{2}AC\)
\(=\frac{1}{4}AB+\frac{1}{6}AC\)
HT