tìm tất cả các cặp số nguyên dương m,n
5m+5n=150
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-5}{6}-\left(-\dfrac{7}{6}\right)+4\dfrac{1}{2}\\ =\dfrac{-5}{6}+\dfrac{7}{6}+\dfrac{9}{2}\\ =\dfrac{2}{6}+\dfrac{9}{2}\\ =\dfrac{2}{6}+\dfrac{27}{6}\\ =\dfrac{29}{6}\)
\(\dfrac{1}{4}.5\dfrac{1}{3}:\left(-\dfrac{3}{7}\right)=\dfrac{1}{4}.\dfrac{16}{3}:\left(-\dfrac{3}{7}\right)=\dfrac{4}{3}:\left(-\dfrac{3}{7}\right)=-\dfrac{28}{9}\)
\(\dfrac{1}{4}.\dfrac{2}{3}+2\dfrac{3}{4}=\dfrac{2}{12}+\dfrac{11}{4}=\dfrac{35}{12}\)
\(-\dfrac{5}{6}+\dfrac{7}{6}+4\dfrac{1}{2}=\dfrac{2}{6}+\dfrac{9}{2}=\dfrac{1}{3}+\dfrac{9}{2}=\dfrac{29}{6}\)
\(\dfrac{1}{4}\cdot5\dfrac{1}{3}:\dfrac{-3}{7}\\ =\dfrac{1}{4}\cdot\dfrac{16}{3}\cdot\dfrac{-7}{3}\\ =\dfrac{1\cdot16\cdot-7}{4\cdot3\cdot3}\\ =\dfrac{-28}{9}\)
_____________
\(\dfrac{1}{4}\cdot\dfrac{2}{3}+2\dfrac{3}{4}\\ =\dfrac{1}{4}\cdot\dfrac{2}{3}+\dfrac{11}{4}\\ =\dfrac{2}{12}+\dfrac{11}{4}\\ =\dfrac{2}{12}+\dfrac{33}{12}\\ =\dfrac{35}{12}\)
\(\dfrac{1}{4}.5\dfrac{1}{3}:\left(-\dfrac{3}{7}\right)=\dfrac{1}{4}.\dfrac{16}{3}:\left(-\dfrac{3}{7}\right)=\dfrac{4}{3}:\left(-\dfrac{3}{7}\right)=-\dfrac{28}{9}\)
\(\dfrac{1}{4}.\dfrac{2}{3}+2\dfrac{3}{4}=\dfrac{1}{6}+\dfrac{11}{4}=\dfrac{35}{12}\)
Lời giải:
Ta thấy:
$ab=\frac{3}{4}>0; bc=\frac{3}{10}>0; ca=\frac{1}{10}>0$
$\Rightarrow a,b,c>0$.
$ab=\frac{3}{4}, bc=\frac{3}{10}, ca=\frac{1}{10}$
$\Rightarrow ab.bc.ac=\frac{3}{4}.\frac{3}{10}.\frac{1}{10}$
$\Rightarrow (abc)^2=\frac{9}{400}=(\frac{3}{20})^2=(\frac{-3}{20})^2$
Do $a,b,c>0$ nên $abc>0$
$\Rightarrow abc=\frac{3}{20}$.
$a=abc:(bc)=\frac{3}{20}: \frac{3}{10}=\frac{1}{2}$
$b=abc:(ac)=\frac{3}{20}:\frac{1}{10}=\frac{3}{2}$
$c=abc:(ab)=\frac{3}{20}: \frac{3}{4}=\frac{1}{5}$
\(\dfrac{ac}{bc}=\dfrac{1}{10}:\dfrac{3}{10}=\dfrac{1}{3}\Rightarrow\dfrac{a}{b}=\dfrac{1}{3}\Rightarrow a=\dfrac{1}{3}b\)
Mà: \(ab=\dfrac{3}{4}=>\dfrac{1}{3}b\cdot b=\dfrac{3}{4}=>b^2=\dfrac{3}{4}:\dfrac{1}{3}=\dfrac{9}{4}\)
\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{3}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\)
TH1: \(b=\dfrac{3}{2}=>a=\dfrac{1}{3}\cdot\dfrac{3}{2}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{3}{2}c=\dfrac{3}{10}=>c=\dfrac{3}{10}:\dfrac{3}{2}=\dfrac{1}{5}\)
TH2: \(b=-\dfrac{3}{2}=>a=\dfrac{1}{3}\cdot\left(-\dfrac{3}{2}\right)=-\dfrac{1}{2}\)
\(\Rightarrow-\dfrac{3}{2}c=\dfrac{3}{10}=>c=\dfrac{3}{10}:-\dfrac{3}{2}=\dfrac{-1}{5}\)
\(\dfrac{-15}{20}+\left(5-\dfrac{7}{8}\right)=\dfrac{-3}{4}+5-\dfrac{7}{8}=\dfrac{-6}{8}+\dfrac{40}{8}-\dfrac{7}{8}=\dfrac{27}{8}\)
\(\dfrac{4}{-5}\cdot\left(\dfrac{2}{3}-\dfrac{7}{8}\right)=\dfrac{4}{-5}\cdot\left(\dfrac{16}{24}-\dfrac{21}{24}\right)=\dfrac{4}{-5}\cdot\dfrac{-5}{24}=\dfrac{1}{6}\)
\(\dfrac{13}{17}\cdot\dfrac{4}{5}+\dfrac{13}{17}\cdot\dfrac{-3}{4}=\dfrac{13}{17}\cdot\left(\dfrac{4}{5}+\dfrac{-3}{4}\right)=\dfrac{13}{17}\cdot\left(\dfrac{16}{20}-\dfrac{15}{20}\right)=\dfrac{13}{17}\cdot\dfrac{1}{20}=\dfrac{13}{340}\)
\(-\dfrac{15}{20}+\left(5-\dfrac{7}{8}\right)=-\dfrac{3}{4}+5-\dfrac{7}{8}=\dfrac{-6}{8}-\dfrac{7}{8}+5=-\dfrac{13}{8}+5=\dfrac{27}{8}\)
\(-\dfrac{4}{5}\left(\dfrac{2}{3}-\dfrac{7}{8}\right)=-\dfrac{4}{5}\left(-\dfrac{5}{24}\right)=\dfrac{1}{6}\)
\(\dfrac{13}{17}.\dfrac{4}{5}+\dfrac{13}{17}.\left(-\dfrac{3}{4}\right)=\dfrac{13}{17}\left(\dfrac{4}{5}-\dfrac{3}{4}\right)=\dfrac{13}{17}.\dfrac{1}{20}=\dfrac{13}{340}\)
\(\left(x-\dfrac{3}{2}\right)^2=\dfrac{9}{16}=\left(\dfrac{3}{4}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{3}{4}\\x-\dfrac{3}{2}=-\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
\(\left(x-\dfrac{3}{2}\right)^2=\dfrac{9}{16}\\ \left(x-\dfrac{3}{2}\right)^2=\left(\dfrac{3}{4}\right)^2\)
TH1: \(x-\dfrac{3}{2}=\dfrac{3}{4}\Rightarrow x=\dfrac{3}{4}+\dfrac{3}{2}\Rightarrow x=\dfrac{3}{4}+\dfrac{6}{4}\Rightarrow x=\dfrac{9}{4}\)
TH2: \(x-\dfrac{3}{2}=-\dfrac{3}{4}\Rightarrow x=-\dfrac{3}{4}+\dfrac{3}{2}\Rightarrow x=-\dfrac{3}{4}+\dfrac{6}{4}\Rightarrow x=\dfrac{3}{4}\)
\(10\cdot10^2\cdot10^3\cdot...\cdot10^x=10^{12}\\ 10^{1+2+3+...+x}=10^{12}\\ 1+2+3+...+x=12\\ \dfrac{x\left(x+1\right)}{2}=12\\ x\left(x+1\right)=24\\ x^2+x-24=0\)
=> Không có x thuộc N thỏa
anh giải thích cho em phần không có x thuộc N thỏa là sao
Đặt \(x^2+3x=t\)
\(\left(t+1\right)\left(t-3\right)-5=t^2-2t-8=\left(t-1\right)^2-9=\left(t-4\right)\left(t+2\right)\)
\(\Rightarrow\left(x^2+3x-4\right)\left(x^2+3x+2\right)=\left(x-1\right)\left(x+4\right)\left(x+1\right)\left(x+2\right)\)
\(\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\\ =\left(x^2+3x-1+2\right)\left(x^2+3x-1-2\right)-5\\ =\left(x^2+3x-1\right)^2-2^2-5\\ =\left(x^2+3x-1\right)^2-3^2\\ =\left(x^2+3x-1-3\right)\left(x^2+3x-1+3\right)\\ =\left(x^2+3x-4\right)\left(x^2+3x+2\right)\\ =\left(x-1\right)\left(x+4\right)\left(x+1\right)\left(x+2\right)\)
\(x-\dfrac{8}{15}=\dfrac{11}{3}\Leftrightarrow x=\dfrac{11}{3}+\dfrac{8}{15}=\dfrac{21}{5}\)
\(\dfrac{3x}{2}+\dfrac{7}{3}=\dfrac{5}{4}\Leftrightarrow\dfrac{3x}{2}=\dfrac{5}{4}-\dfrac{7}{3}=-\dfrac{13}{12}\Leftrightarrow x=-\dfrac{13}{12}:\dfrac{3}{2}=-\dfrac{13}{18}\)
\(\dfrac{7}{8}-x=-\dfrac{4}{5}:\dfrac{3}{10}=-\dfrac{8}{3}\Leftrightarrow x=\dfrac{7}{8}+\dfrac{8}{3}=\dfrac{85}{24}\)
\(x-\dfrac{8}{15}=\dfrac{11}{3}\\ x=\dfrac{8}{15}+\dfrac{11}{3}\\ x=\dfrac{8}{15}+\dfrac{55}{15}\\ x=\dfrac{63}{15}\)
___________
\(\dfrac{3}{2}x+\dfrac{7}{3}=\dfrac{5}{4}\\ \dfrac{3}{2}x=\dfrac{5}{4}-\dfrac{7}{3}\\ \dfrac{3}{2}x=\dfrac{-13}{12}\\ x=\dfrac{-13}{12}:\dfrac{3}{2}\\ x=\dfrac{-13}{18}\)
____________
\(\dfrac{7}{8}-x=-\dfrac{4}{5}:\dfrac{3}{10}\\ \dfrac{7}{8}-x=\dfrac{-8}{3}\\ x=\dfrac{7}{8}+\dfrac{8}{3}\\ x=\dfrac{85}{24}\)
Lời giải:
Không mất tổng quát giả sử $m\geq n$. Ta có:
$5^m+5^n=150$
$5^n(5^{m-n}+1)=150=2.3.5^2$
Ta thấy $5^{m-n}+1$ không chia hết cho $5$ với mọi $m,n$ nguyên dương.
Do đó $5^n=5^2\Rightarrow n=2$.
$5^{m-n}+1=2.3.5^2:5^n=2.3.5^2:5^2=6$
$5^{m-2}+1=6$
$5^{m-2}=5=5^1\Rightarrow m-2=1\Rightarrow m=3$
Vậy $(m,n)=(3,2)$ và hoán vị