K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

\(\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{1}{\sqrt{x-1}+\sqrt{x}}+\frac{\sqrt{x^3}-x}{\sqrt{x}-1}\)

\(ĐKXĐ:x\ge1\)

\(\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{1}{\sqrt{x-1}+\sqrt{x}}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{x-1-x}+x\)

\(\frac{2\sqrt{x-1}}{-1}+x\)

\(x-2\sqrt{x-1}\)

\(\left(\sqrt{x-1}-1\right)^2\)

28 tháng 8 2021

a, Vì AE là tiếp tuyến đường tròn (O), A là tiếp điểm 

EF là tiếp tuyến đường tròn (O), C là tiếp điểm 

=> EA = EF ( tính chất 2 tiếp tuyến cắt nhau ) (1) 

Vì FC là tiếp tuyến đường tròn (O), C là tiếp điểm 

FB là tiếp tuyến đường tròn (O), B là tiếp điểm 

=> FC = FB ( tính chất 2 tiếp tuyến cắt nhau (2) 

Lấy (1) + (2) => EC + FC = EA + FB => EF = EA + FB 

b, bạn có rất nhiều cách cm nhé

Ta có : EA = EF (cma )

OA = OC = R 

=> EO là đường trung trực đoạn AF 

hay EO cắt AF tại M

Ta có : FC = FB ( cma )

OB = OC = R 

=> OF là đường trung trực đoạn BC 

hay FO cắt BC tại N 

c, *) Vì EO là đường trung trực ( cmb )

=> \(EO\perp AC\)và \(AM=MC=\frac{AC}{2}\)

hay M là trung điểm AC

Vì OF là đường trung trực ( cmb )

=> \(OF\perp BC\)và \(CN=NC=\frac{BC}{2}\)

hay N là trung điểm BC 

Xét tam giác ABC có : M là trung điểm AC

N là trung điểm AB 

=> MN là đường trung bình tam giác ABC 

=> MN // AB và MN = AB/2 

*) Vì C thuộc đường tròn (O) 

AB là đường kính => ^ACB = 900 ( tính chất điểm thuộc đường tròn nhìn đường kính )

=> \(AC\perp BC\)(1)

mà OF là đường trung trực => \(OF\perp BC\)(2)

Từ (1) ; (2) suy ra AC // OF ( tính chất vuông góc đến song song )

d, Ta có : AC // OF ( cmt ) mà ^EMC = 900

=> ^EOF = 900

Xét tam giác MCE và tam giác OFE 

^EMC = ^EOF = 900 ( cmt )

^E _ chung 

Vậy tam giác MCE ~ tam giác OFE ( g.g )

=> \(\frac{MC}{OF}=\frac{ME}{OE}\Rightarrow MC.OE=ME.OF\)

28 tháng 8 2021

\(d,ĐKXĐ:x\ge0\)

\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)`

\(2x-3\sqrt{x}-9=0\)

\(\Delta=\sqrt{ \left(-3\right)^2-4.2.\left(-9\right)}=9\)

\(\orbr{\begin{cases}\sqrt{x}=\frac{3+9}{4}=3\left(TM\right)\\x=\frac{3-9}{4}=-\frac{3}{2}\left(KTM\right)\end{cases}}\Rightarrow x=3^2=9\left(TM\right)\)

vậy nghiệm duy nhất của pt là 9

28 tháng 8 2021

Với \(x\ge0;x\ne4\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}+\frac{x+4}{4-x}\)

\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-x-4}{x-4}=\frac{5\sqrt{x}-10}{x-4}=\frac{5}{\sqrt{x}+2}\)

c, Ta có : \(A.B>1\Rightarrow\frac{5}{\sqrt{x}+3}-1>0\Leftrightarrow\frac{2-\sqrt{x}}{\sqrt{x}+3}>0\)

\(\Rightarrow2-\sqrt{x}>0\Leftrightarrow x< 4\)Kết hợp với đk vậy \(0\le x< 4\)

28 tháng 8 2021

\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}.1+1}+\sqrt{\left(\sqrt{2}\right)^2-2\sqrt{2}.2+4}\)

\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-2\right)^2}\)

\(=\left|\sqrt{2}+1\right|+\left|\sqrt{2}-2\right|=\sqrt{2}+1+2-\sqrt{2}=3\)

28 tháng 8 2021
Chào đồng hương tui cx lớp 9nek

Bài tập Tất cả

28 tháng 8 2021

Trả lời:

a, \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)

\(=2\sqrt{3^2.5}+\sqrt{5}-3\sqrt{4^2.5}\)

\(=2.3\sqrt{5}+\sqrt{5}-3.4\sqrt{5}\)

\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}=-5\sqrt{5}\)

c, \(\left(\frac{3-\sqrt{3}}{\sqrt{3}-1}-\frac{2-\sqrt{2}}{1-\sqrt{2}}\right):\frac{1}{\sqrt{3}+\sqrt{2}}\)

\(=\left[\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}-\frac{\left(2-\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1-2}\right].\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\left(\frac{3\sqrt{3}+3-3-\sqrt{3}}{2}-\frac{2+2\sqrt{2}-\sqrt{2}-2}{-1}\right).\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\left(\frac{2\sqrt{3}}{2}+\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\frac{2\sqrt{3}+2\sqrt{2}}{2}.\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\frac{\left(2\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{2}=\frac{6+2\sqrt{6}+2\sqrt{6}+4}{2}=\frac{10+4\sqrt{6}}{2}=5+2\sqrt{6}\)

28 tháng 8 2021

Trả lời:

a, Thay x = 1/4 vào A, ta có:

\(A=\frac{\sqrt{\frac{1}{4}}+2}{\sqrt{\frac{1}{4}}+3}=\frac{\frac{1}{2}+2}{\frac{1}{2}+3}=\frac{\frac{5}{2}}{\frac{7}{2}}=\frac{5}{7}\)

b, \(B=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}+\frac{x+4}{4-x}\left(ĐK:x\ge0;x\ne4\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\frac{3\left(\sqrt{x}-2\right)}{x-4}-\frac{x+4}{x-4}\)

\(=\frac{x+2\sqrt{x}}{x-4}+\frac{3\sqrt{x}-6}{x-4}-\frac{x+4}{x-4}\)

\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-x-4}{x-4}\)

\(=\frac{5\sqrt{x}-10}{x-4}=\frac{5\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{5}{\sqrt{x}+2}\)

c, \(A.B>1\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}.\frac{5}{\sqrt{x}+2}>1\) \(\left(ĐK:x\ge0\right)\)

\(\Leftrightarrow\frac{5}{\sqrt{x}+3}>1\)

\(\Leftrightarrow\frac{5}{\sqrt{x}+3}-1>0\)

\(\Leftrightarrow\frac{5-\sqrt{x}-3}{\sqrt{x}+3}>0\)

\(\Leftrightarrow\frac{2-\sqrt{x}}{\sqrt{x}+3}>0\)

\(\Leftrightarrow2-\sqrt{x}>0\) (vì \(\sqrt{x}+3>0\) )

\(\Leftrightarrow-\sqrt{x}>-2\)

\(\Leftrightarrow\sqrt{x}< 2\) 

\(\Leftrightarrow x< 4\)

Vì \(x\ge0\) và \(x< 4\) 

nên ta có các số nguyên x thỏa mãn là: 0; 1; 2; 3 

Vậy \(x\in\left\{0;1;2;3\right\}\)