Câu 1 : Yhực hiện phép tính
a/ 2xy ( 3x2y +4xy2).
b/ 3x2 .( 4xy - 7 x +5y2).
c/ ( x – 2 ) ( 4x2 +5xy3 – 7 )
d/ ( x – 3y )2.
e/ 25 – x2
f/ (2x – y)2
g/ x ( x + 4 ) - ( x – 3 ) ( x +3 ) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |x - 2| ; |x - 5| ; |x - 18| ≥0∀x∈R≥0∀x∈R
=> |x - 2| + |x - 5| + |x - 18| ≥0∀x∈R≥0∀x∈R
=> D có giá trị nhỏ nhất khi x = 2;5;18
Mà x ko thể đồng thời nhận 3 giá trị
Nên GTNN của D là : 16 khi x = 5 ok nha bạn
x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4
Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)
Vậy GTNN của x^2/x-1 = 4 <=> x= 2
k mk nha
\(2x^3-8x^2-6x+36\)
=\(2\left(x^3-4x^2-3x+18\right)\)
=\(2\left(x^3-6x^2+9x+2x^2-12x+18\right)\)
=\(2\left[x\left(x^2-6x+9\right)+2\left(x^2-6x+9\right)\right]\)
=\(2\left(x^2-6x+9\right)\left(x+2\right)\)
=\(2\left(x-3\right)^2\left(x+2\right)\)
HT
\(\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)
\(=\frac{2x}{x\left(x-3\right)}+\frac{2x}{x^2-3x-x+3}+\frac{x}{x-1}\)
\(=\frac{2}{x-3}+\frac{2x}{x\left(x-3\right)-\left(x-3\right)}+\frac{x}{x-1}\)
\(=\frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{2x}{\left(x-3\right)\left(x-1\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}\)
\(=\frac{2x-2+2x+x^2-3x}{\left(x-3\right)\left(x-1\right)}\)
\(=\frac{x^2+x-2}{\left(x-3\right)\left(x-1\right)}=\frac{x^2-x+2x-2}{\left(x-3\right)\left(x-1\right)}=\frac{x\left(x-1\right)+2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=\frac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(x-1\right)}=\frac{x+2}{x-3}\)