tính nhanh:
A = (-1) + 5 + (-9) + 13 + ... + (-41) + 45
B= 1-2-3+4+5-6-7+8+...+997 - 988 - 999 + 1000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt $20x=25y=30z=t$ với $t$ là số tự nhiên khác 0.
$\Rightarrow x=\frac{t}{20}; y=\frac{t}{25}; z=\frac{t}{30}$
Để $x,y,z$ là stn thì $t\vdots 20,25,30$
$\Rightarrow t=BC(20,25,30)$
Để $x,y,z$ nhỏ nhất và khác 0 thì $t$ nhỏ nhất và khác 0
$\Rightarrow t=BCNN(20,25,30)$ sao cho $t\neq 0$
$\Rightarrow t=300$
$\Rightarrow x=\frac{t}{20}=\frac{300}{20}=15, y=\frac{t}{25}=\frac{300}{25}=12; z=\frac{300}{30}=10$
Bài 2:
$2n+1\vdots n-1$
$\Rightarrow 2(n-1)+3\vdots n-1$
$\Rightarrow 3\vdots n-1$
$\Rightarrow n-1\in \left\{1; -1; 3;-3\right\}$
$\Rightarrow n\in \left\{3; 0; 4; -2\right\}$
Lời giải:
$3^{2015}+3^{100}=3^{100}(3^{1915}+1)$
Ta thấy:
$3^3\equiv 1\pmod {13}$
$\Rightarrow 3^{1915}=(3^3)^{638}.3\equiv 1^{638}.3\equiv 3\pmod {13}$
$\Rightarrow 3^{1915}+1\equiv 4\pmod {13}$
Ta thấy: $3^{100}\not\vdots 13; 3^{1915}+1\not\vdots 13$
$\Rightarrow 3^{100}(3^{1915}+1)\not\vdots 13$
Bạn xem lại đề.
125.(-3).(-8).(-10)
= [125.(-8)].[(-3).(-10)]
= -1000.30
= -30000
Lời giải:
$A=[(-1)+5]+[(-9)+13]+....+[(-41)+45]$
$=4+4+4+....+4$
Số lần xuất hiện của 4 là: $[(45-1):4+1]:2=6$
$A=4\times 6=24$
-------------------------
$B=(1-2-3+4)+(5-6-7+8)+....+(997-998-999+1000)$
$=0+0+.....+0=0$