K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:
$A=[(-1)+5]+[(-9)+13]+....+[(-41)+45]$

$=4+4+4+....+4$
Số lần xuất hiện của 4 là: $[(45-1):4+1]:2=6$

$A=4\times 6=24$

-------------------------

$B=(1-2-3+4)+(5-6-7+8)+....+(997-998-999+1000)$
$=0+0+.....+0=0$

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Bài 1:

Đặt $20x=25y=30z=t$ với $t$ là số tự nhiên khác 0.

$\Rightarrow x=\frac{t}{20}; y=\frac{t}{25}; z=\frac{t}{30}$

Để $x,y,z$ là stn thì $t\vdots 20,25,30$

$\Rightarrow t=BC(20,25,30)$

Để $x,y,z$ nhỏ nhất và khác 0 thì $t$ nhỏ nhất và khác 0

$\Rightarrow t=BCNN(20,25,30)$ sao cho $t\neq 0$

$\Rightarrow t=300$

$\Rightarrow x=\frac{t}{20}=\frac{300}{20}=15, y=\frac{t}{25}=\frac{300}{25}=12; z=\frac{300}{30}=10$

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Bài 2:

$2n+1\vdots n-1$

$\Rightarrow 2(n-1)+3\vdots n-1$

$\Rightarrow 3\vdots n-1$

$\Rightarrow n-1\in \left\{1; -1; 3;-3\right\}$

$\Rightarrow n\in \left\{3; 0; 4; -2\right\}$

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

9 tháng 12 2023

A nha bạn, chúc học tốt!

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

$3^{2015}+3^{100}=3^{100}(3^{1915}+1)$

Ta thấy:
$3^3\equiv 1\pmod {13}$

$\Rightarrow 3^{1915}=(3^3)^{638}.3\equiv 1^{638}.3\equiv 3\pmod {13}$

$\Rightarrow 3^{1915}+1\equiv 4\pmod {13}$

Ta thấy: $3^{100}\not\vdots 13; 3^{1915}+1\not\vdots 13$

$\Rightarrow 3^{100}(3^{1915}+1)\not\vdots 13$

Bạn xem lại đề.

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:
a.$n=7t$

b. $t=\frac{n}{7}$

9 tháng 12 2023

125.(-3).(-8).(-10)

= [125.(-8)].[(-3).(-10)]

= -1000.30

= -30000

9 tháng 12 2023

a) \(\left(x+15\right)-12=\left(-20+x\right)-\left(18+x\right)\)

\(\Rightarrow x+15-12=-20+x-18-x\)

\(\Rightarrow x+3=\left(x-x\right)+\left(-20-18\right)\)

\(\Rightarrow x+3=-38\)

\(\Rightarrow x=-38-3\)

\(\Rightarrow x=-41\)

Vậy: \(x=-41\).

9 tháng 12 2023

-9

9 tháng 12 2023

-9