K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2015

x + y = 10 => y = 10 - x

\(S=\frac{1}{x}+\frac{1}{y}=\frac{y+x}{xy}=\frac{10}{x\left(10-x\right)}=\frac{10}{10x-x^2}\)

10x - x2 = - (x2 - 10x + 25) + 25 = - (x - 5)2 + 25 \(\le\) 25 với mọi x

=> \(S=\frac{10}{10x-x^2}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy Min S = \(\frac{2}{5}\) khi x - 5 = 0 hay x = 5 => y = 5

28 tháng 5 2015

làm bài trên đi kìa ngồi đó mà bàn về lớp

27 tháng 5 2015

P\(=\frac{\left(x+6\right)^2+\left(x-6\right)^2}{x^2+36}=\frac{\left(x^2+12x+36\right)+\left(x^2-12x+36\right)}{x^2+36}\)

=\(\frac{x^2+12x+36+x^2-12x+36}{x^2+36}=\frac{2x^2+72}{x^2+36}=\frac{2\left(x^2+36\right)}{x^2+36}=2\)

 Vì P=2 nên giá trị của P không phụ thuộc vào giá trị của x

27 tháng 5 2015

P=\(\frac{\left(x+6\right)\left(x+6\right)+\left(x-6\right)\left(x-6\right)}{x^2+36}=\frac{x^2+12x+36+x^2-12x-36}{x^2+36}=\frac{x^2}{x^2+36}\)

13 tháng 5 2015

CHỈ 6 CẶP THÔI !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

7 tháng 5 2015

Đề có chỗ nhầm lẫn: Từ M vẽ tia Mx vuông góc với AC và cắt AC tại N

A C B 9 15 M N 4

a) MN ⊥ AC; AB ⊥ AC => MN // AB

=> Tam giác CMN đồng dạng với ABC

b) MN/AB = CM/CB => MN/9 = 4/15 => MN = 9 . 4 /15

c) AC2 = BC2 - AB2 = 152 - 92 = 144

=> AC = 12

Diện tích ABC = 1/2 x 12 x 9

Vì CMN đồng dạng với ABC theo tỉ số đồng dạng là 4/15

=> Diện tích MNC = (4/15)2 x (diện tích ABC)

Bạn tự thay số rồi tính nhé

23 tháng 1 2016

=......................................................................................................................................................may nhi olm

21 tháng 4 2015

A B C D 1 2 c a b

*) Nếu A = 2 góc B thì a2 = b2 + bc.

Kẻ AD là phân giác của góc A => góc A1 = A2 = A/ 2

=> góc  A1 = A2 = góc B

Xét tam giác ABC và tam giác DAC có: góc C chung ; góc A2 = góc B

=> tam giác ABC đồng dạng với tam giác DAC ( g - g)

=> \(\frac{DC}{AC}=\frac{AC}{BC}\Rightarrow\frac{DC}{b}=\frac{b}{a}\) (1)

Do AD là p/g của góc BAC nên \(\frac{DC}{AC}=\frac{DB}{AB}\Rightarrow\frac{DC}{AC}=\frac{DC+DB}{AC+AB}=\frac{BC}{AC+AB}\) (theo tính chất của dãy tỉ số bằng nhau)

\(\Rightarrow\frac{DC}{b}=\frac{a}{b+c}\) (2)

Từ (1)(2) => \(\frac{a}{b+c}=\frac{b}{a}\Rightarrow a^2=b\left(b+c\right)=b^2+bc\)

*) Ngược lại: Nếu a2 = b2 + bc => góc A = 2 . góc B

Kẻ AD là phân giác của góc A => \(\frac{DC}{AC}=\frac{DB}{AB}\Rightarrow\frac{DC}{AC}=\frac{DC+DB}{AC+AB}=\frac{BC}{AC+AB}=\frac{a}{b+c}\)(3)

\(a^2=b^2+bc=b\left(b+c\right)\Rightarrow\frac{b}{a}=\frac{a}{b+c}\Rightarrow\frac{AC}{BC}=\frac{a}{b+c}\)(4)

từ (3)(4) => \(\frac{DC}{AC}=\frac{AC}{BC}\) mà có góc ACB chung 

=> tam giác DAC đồng dạng với tam giác ABC (c - g - c)

=> góc A2 = góc B 

mà góc A= 2. góc A2 nên góc A = 2. góc B

23 tháng 4 2015

A B C O H E B' C'

Gọi BH; CE là đường cao 

Xét tam giác ABH và ACE có: góc A chung; góc AHB = AEC = 90o

=> tam giác ABH đồng dạng với ACE (g - g)

=> \(\frac{AB}{AC}=\frac{AH}{AE}\Rightarrow AE.AB=AH.AC\)                 (1)

Xét tam giác AB'H và ACB' có góc B'AH chung; góc AB'C = AHB' = 90o

=> tam giác AB'H đồng dạng với ACB' (g - g)

=> \(\frac{AB'}{AC}=\frac{AH}{AB'}\Rightarrow AB'.AB'=AH.AC\)          (2)

Xét tam giác AC'E và ABC' có: góc C'AE chung ; góc AEC' = AC'B = 90o

=> tam giác AC'E đồng dạng với ABC' (g - g)

=> \(\frac{AC'}{AB}=\frac{AE}{AC'}\Rightarrow AC'.AC'=AE.AB\)            (3)

từ (1)(2)(3) => AB'. AB' = AC'. AC' => AB' = AC'

13 tháng 4 2015

n4 + 4 = (n2)2 + 4.n2 + 4 - 4.n2​  = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n)(n2 +2 + 2n) = [(n -1)2 + 1].[(n + 1)2 +1] 

Nếu n = 1 thì n4 + 4 = 1.5 = 5 là số nguyên tố

Nếu n>1 thì n4 + 4 là tích của hai số lớn hơn 1 là [(n -1)2 + 1]. và [(n + 1)2 +1] . Khi nó nó không phải là số nguyên tố.

ĐS: n = 1