Giúp tui với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{4,3}{a}=\dfrac{7,7}{b}=3\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{4,3}{a}=\dfrac{7,7}{b}=\dfrac{4,3+7,7}{a+b}=\dfrac{12}{a+b}=3\)
\(\Rightarrow a+b=\dfrac{12}{3}=4\)
Từ đề bài suy ra:
4,3/a=7,7/b=(4,3+7,7)/(a+b)=12/(a+b)(áp dụng t/c dãy tỉ số bằng nhau)
⇒12/(a+b)=3
⇔a+b=12/3=4
VẬY a+b=4 thỏa mãn đề bài cho
Lời giải:
$A=1.5+2.6+3.7+...+52.56$
$=1(1+4)+2(2+4)+3(3+4)+...+52(52+4)$
$=\underbrace{(1.1+2.2+3.3+....+52.52)}_{B}+\underbrace{4(1+2+3+....+52)}_{C}$
Có:
$C=4.52(52+1):2=5512$
$B=1^2+2^2+...+52^2=\frac{52.53.105}{6}=48230$
(bạn có thể xem chứng minh công thức ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)
$\Rightarrow A=B+C=48230+5512=53742$
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
b: Ta có: ΔBAE=ΔBDE
=>\(\widehat{ABE}=\widehat{DBE}\)
Ta có: \(\widehat{BNH}+\widehat{EBC}=90^0\)(ΔBHN vuông tại H)
\(\widehat{AEB}+\widehat{ABE}=90^0\)(ΔABE vuông tại A)
mà \(\widehat{EBC}=\widehat{ABE}\)
nên \(\widehat{BNH}=\widehat{AEB}\)
mà \(\widehat{BNH}=\widehat{ANE}\)(hai góc đối đỉnh)
nên \(\widehat{ANE}=\widehat{AEN}\)
=>ΔANE cân tại A
c: Ta có: ΔBAD cân tại B
mà BE là đường phân giác
nên BE\(\perp\)AD
=>NE\(\perp\)AD
Ta có: ΔANE cân tại A
mà AD là đường cao
nên AD là phân giác của góc NAE
=>AD là phân giác của góc HAC
d: Xét ΔAHD và ΔAED có
AH=AE
\(\widehat{HAD}=\widehat{EAD}\)
AD chung
Do đó: ΔAHD=ΔAED
=>HD=ED và \(\widehat{AHD}=\widehat{AED}\)
Ta có: \(\widehat{AHD}=\widehat{AED}\)
mà \(\widehat{AHD}=90^0\)
nên \(\widehat{AED}=90^0\)
=>DE\(\perp\)AC tại E
=>ΔDEC vuông tại E
=>DE<DC
mà DE=HD
nên HD<DC
e:
Xét ΔABC vuông tại A có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot AH\cdot BC\)
=>\(AB\cdot AC=AH\cdot BC\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
\(\left(AH+BC\right)^2=AH^2+BC^2+2\cdot AH\cdot BC\)
\(\left(AB+AC\right)^2=AB^2+AC^2+2\cdot AB\cdot AC=BC^2+2\cdot AB\cdot AC\)
mà \(2\cdot AH\cdot BC=2\cdot AB\cdot AC\left(AH\cdot BC=AB\cdot AC\right)\)
nên \(\left(AH+BC\right)^2-\left(AB+AC\right)^2=AH^2>0\)
=>\(\left(AH+BC\right)^2>\left(AB+AC\right)^2\)
=>AH+BC>AB+AC
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
c: ta có: \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
d: ta có: ΔBAD=ΔBED
=>DA=DE
mà DE<DC(ΔDEC vuông tại E)
nên DA<DC
=>DC>DA
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
=>BA=BE
Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBF}\) chung
Do đó: ΔBEF=ΔBAC
=>BF=BC
=>ΔBFC cân tại B
\(\dfrac{4,3}{a}=\dfrac{7,7}{b}=3\)
Áp dụng tính chất dãy tí số bằng nhau ta có:
\(\dfrac{4,3}{a}=\dfrac{7,7}{b}=\dfrac{4,3+7,7}{a+b}=\dfrac{12}{a+b}=3\)
\(\Rightarrow a+b=\dfrac{12}{3}\)
\(\Rightarrow a+b=4\)
Điền vào số 4