Giúp mình ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+\frac{4}{a}+\frac{1}{4b}=\frac{25}{36}a+\frac{4}{a}+\frac{25}{36}b+\frac{1}{4b}+\frac{11}{36}\left(a+b\right)\)
\(\ge2\sqrt{\frac{25}{36}a.\frac{4}{a}}+2\sqrt{\frac{25}{36}b.\frac{1}{4b}}+\frac{11}{36}.3\)
\(=\frac{10}{3}+\frac{5}{6}+\frac{11}{12}=\frac{61}{12}\)
Dấu \(=\)khi \(\hept{\begin{cases}\frac{25}{36}a=\frac{4}{a}\\\frac{25}{36}b=\frac{1}{4b}\\a+b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{12}{5}\\b=\frac{3}{5}\end{cases}}\).
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}=\frac{1+a^2}{1+a^2}-\frac{a^2}{1+a^2}+\frac{1+b^2}{1+b^2}-\frac{b^2}{1+b^2}+\frac{1+c^2}{1+c^2}-\frac{c^2}{1+c^2}\)
\(=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)
\(\ge3-\left(\frac{a^2}{2a}+\frac{b^2}{2b}+\frac{c^2}{2c}\right)\)
\(=3-\frac{a+b+c}{2}=\frac{3}{2}\)
Dấu \(=\)khi \(a=b=c=1\).