Cách tính phương trình lượng giác ?
Cách xét khai triển trong nhị thức Newton ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khai triển đa thức là biến đổi một đa thức ở dạng tích các tổng thành dạng tổng các tích bằng cách nhân phân phối với phép cộng. Trong quá trình khai triển, có thể sử dụng các khai triển nhị thức, hoặc hằng đẳng thức. Ví dụ một số khai triển đa thức đơn giản: {\displaystyle ^{2}=x^{2}+2xy+y^{2}}
1. Như Triển khai 1 biểu thức
2. Về toán học, mở rộng một biểu thức thành một tổng nhiều số hạng. VD:(a+b)2 khai triển thành a2 + 2ab + b2.
3. Trải rộng ra trên mặt phẳng.
\(3\left(\sin5x-\cos x\right)=4\left(\sin x+\cos5x\right)\)
\(\Leftrightarrow3\sin5x-4\cos5x=4\sin x+3\cos x\)
\(\Leftrightarrow\frac{3}{5}\sin5x-\frac{4}{5}\cos5x=\frac{4}{5}\sin x+\frac{3}{5}\cos x\)
\(\Leftrightarrow\sin5x\cos\alpha-\cos5x\sin\alpha=\sin x\sin\alpha+\cos x\cos\alpha\) \(\left(\frac{3}{5}=\cos\alpha;\frac{4}{5}=\sin\alpha\right)\)
\(\Leftrightarrow\sin\left(5x-\alpha\right)=\cos\left(x-\alpha\right)\)
\(\Leftrightarrow\sin\left(5x-\alpha\right)=\sin\left(\frac{\pi}{2}-x+\alpha\right)\)
\(\Leftrightarrow\orbr{\begin{cases}5x-\alpha=\frac{\pi}{2}-x+\alpha+k2\pi\\5x-\alpha=\pi-\frac{\pi}{2}+x-\alpha+k2\pi\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{12}+\frac{\alpha}{3}+k\frac{\pi}{3}\\x=\frac{\pi}{8}+k\frac{\pi}{2}\end{cases}}\)
Giải
Gọi số đó là abc
Ta có: Có 9 cách chọn a
Có 9 cách chọn b
Có 9 cách chọn c
Vậy có thể lập: 9 x 9 x 9 = 729 (số)
Mình không thể nêu hết nhé.
TL :
\(\text{Δ}y=f\left(x_0+\text{Δ}x\right)-f\left(x_0\right)=f\left(1+1\right)-f\left(1\right)=f\left(2\right)-f\left(1\right)=2^3-1^3=7\)
HT
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π - arcsina + k2π, k ∈ Z.