cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (o). Tiếp tuyến A của đường tròn (o) cắt đường thẳng BC tại điểm D. Gọi M là trung điểm của dây BC
1) chứng minh 4 diểm A,D,O,M cùng thuộc 1 đường tròn
2) tia OM cắt đường tròn (o) tại điểm E, 2 đoạng thẳng AE và BC cắt nhau tại điểm G. Chứng minh điểm E nằm chính giữa cung BC và AB.AC=AE.AG
3) tia phân giác của góc ABC cắt AE tại điểm I. Giả sử dây AB cố định và điểm C di chuyển trên đường tròn (o) sao chp tam giác ABC nhọn (AB<AC). Chứng minh điểm I luôn nằm trên 1 đường tròn ccos định
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.