Cho tam giác ABC có BA < BC. Tia phân giác của góc ABC cắt AC tại D. Trên tia BC lấy điểm E sao cho BE = BA
a) Chứng minh tam giác ABD = tam giác EBD
b) ED cắt BA tại N. Chứng minh AN = CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(a-b=2\left(a+b\right)\)
\(\Rightarrow a-b=2a+2b\)
\(\Rightarrow a-2a=b+2b\)
\(\Rightarrow-a=3b\)
hay \(a=-3b\)
Ta lai co:
\(a-b=a:b\)
\(\Rightarrow-3b-b=-3b:b\)
\(\Rightarrow-4b=-3\)
\(\Rightarrow b=\frac{3}{4}\)
Ma \(a=-3b\Rightarrow a=-3.\frac{3}{4}=-\frac{9}{4}\)
Vay:\(a=-\frac{9}{4};b=\frac{3}{4}\)
HTDT
Ta có : \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\)=> \(\hept{\begin{cases}a=ck\\d=dk\end{cases}}\)
Khi đó, ta có : \(\frac{2\left(ck\right)^2-3\left(ck\right)\left(dk\right)+5\left(dk\right)^2}{2\left(dk\right)^2+3\left(ck\right)\left(dk\right)}=\frac{2c^2k^2-3cdk^2+5d^2k^2}{2d^2k^2+3cdk^2}=\frac{\left(2c^2-3cd+5d^2\right)k^2}{\left(2d^2+3cd\right)k^2}\)
= \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)(Đpcm)
\(a^2-ab+b^2\) \(⋮\)\(9\)
=> \(4\left(a^2-ab+b^2\right)\)\(⋮\)\(9\)
<=> \(3\left(a-b\right)^2+\left(a+b\right)^2\) \(⋮\)\(9\) (1)
hay \(3\left(a-b\right)^2+\left(a+b\right)^2\)\(⋮\)\(3\)
mà \(3\left(a-b\right)^2\)\(⋮\)\(3\)
=> \(\left(a+b\right)^2\)\(⋮\)\(3\) => \(a+b\)\(⋮3\) (*)
Do 3 là số nguyên tố nên suy ra: \(\left(a+b\right)^2\)\(⋮\)\(9\) (2)
Từ (1) và (2) => \(3\left(a-b\right)^2\)\(⋮\)\(9\) => \(\left(a-b\right)^2\)\(⋮\)\(3\) => \(a-b\)\(⋮3\) (**)
Từ (*) và (**) => đpcm
giải:
Ta có : \(\frac{4a}{5}+\frac{9b}{10}+c=10\)
=> \(\frac{8a+9b+10c}{10}=10\)
=> \(8a+9b+10c=100\)
Ta có : \(8a+8b+8c< 8a+9b+10c\)
=> \(a+b+c< \frac{100}{8}< 13\)
Mà :\(11< a+b+c\) => \(11< a+b+c< 13\)
Do \(a+b+c\) nguyên dương =>\(a+b+c=12\)
Ta có:\(\hept{\begin{cases}a+b+c=12\left(1\right)\\8a+9b+10c=100\left(2\right)\end{cases}}\)
nhân 2 vế của\(\left(1\right)\) với 8 ta được
\(\hept{\begin{cases}8a+8b+8c=96\left(3\right)\\8a+9b+10c=100\end{cases}}\)
trừ theo vế của \(\left(2\right)\) cho \(\left(3\right)\)ta được:\(b+2c=4\left(4\right)\)
từ \(\left(4\right)\) =>\(c=1\) vì nếu \(c>=2\) thi do b>=1 =>b+2c>4(mt)
với \(c=1\)=>\(b=2,c=9\)
1. Định nghĩa
Tam giác cân là tam giác có hai cạnh bằng nhau.
2. Tính chất.
Trong một tam giác cân hai góc ở đáy bằng nhau.
Nếu một tam giác có hai góc bằng nhau thì là tam giác cân.
Tam giác vuông cân là tam giác vuông có hai cạnh vuông góc bằng nhau.
3. Tam giác đều.
Định nghĩa: tam giác đều là tam giác có 3 cạnh bằng nhau.
Hệ quả:
- Trong tam giác đều, mỗi góc bằng 600
- Nếu trong một tam giác có ba góc bằng nhau thì đó là tam giác đều.
- Nếu một tam giác cân có 1 góc bằng 600 thì đó là tam giác đều
tui chỉ biết vậy thôi