giải phương trình: \(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ biểu thức đã cho suy ra \(M.x-\sqrt{x}+32M-2=0\) \(\left(i\right)\)
Nếu \(M=0\) suy ra \(\sqrt{x}+2=0\) (vô lý vì \(x\ge0\) nên \(\sqrt{x}+2>0\) )
Nếu \(M\ne0\) thì coi \(\left(i\right)\) là một pt bậc hai đối với ẩn \(\sqrt{x}\) , ta có:
\(\Delta_{\sqrt{x}}=1-4M\left(32M-2\right)\ge0\) \(\Rightarrow\) \(-\frac{1}{16}\le M\le\frac{1}{8}\)
Vậy, Max \(M=\frac{1}{8}\)
Lưu ý: bài viết còn khai sơ, chưa đầy đủ. Bạn có thể bổ sung ý để hoàn thành lời giải nếu cần
Ta có: \(b=0,25P-2a\) thế ngược lên trên ta được
\(\frac{a^2+\left(0,25P-2a\right)^2}{a-2\left(0,25P-2a\right)}=2\)
\(\Leftrightarrow80a^2-a\left(16P+160\right)+P^2+16P=0\)
Để PT có nghiệm thì:
\(\Delta'\ge0\)
Làm tiếp nhé
Bất đẳng thức Bunyakovsky \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) \(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\)
Dấu \(''=''\) xảy ra khi \(\frac{a}{c}=\frac{b}{d}\)
\(----------------\)
\(y^2+yz+z^2=\frac{3}{4}\left(y+z\right)^2+\frac{1}{4}\left(y-z\right)^2\ge\frac{3}{4}\left(y-z\right)^2\) với mọi \(y,z\in R\)
nên từ giả thiết đã cho kết hợp với bất đẳng thức đã chứng minh ở trên, suy ra:ư
\(1\ge\frac{3}{2}x^2+\frac{3}{4}\left(y+z\right)^2\) \(\left(1\right)\)
Lại có: \(\left(2+4\right)\left[\frac{3}{2}x^2+\frac{3}{4}\left(y+z\right)^2\right]\ge\left[\sqrt{3}\left(x+y+z\right)\right]^2\)
suy ra \(\frac{3}{2}x^2+\frac{3}{4}\left(y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{2}\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) ta thu đc \(1\ge\frac{\left(x+y+z\right)^2}{2}\) tức là \(x+y+z\le\sqrt{2}\)
(*Bạn tự tìm điểm rơi nhé!)
ý là các bất đẳng thức hay dùng? nếu thế thì có thể là:
\(x^2+y^2\ge2xy\), dạng căn thức của nó là \(x+y\ge2\sqrt{xy}\)
đối với bậc 3 thì sẽ là x^3+y^3+z^3 lớn hơn hoặc bằng 3xyz