chứng minh rằng:
a) a2+2b2+c2>=2ab-2bc
b) a2+b2+cc>=ab+bc+ca
c) a4+b4+c4>=abc(a+b+c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x < -5, ta có: x +5 < 0; x -2 < 0 => |x+5| = - x - 5; |x-2| = 2 - x
=> - x - 5 + 3. (2-x) = 14 + x => x = -2,6 ( ko thỏa mãn các giá trị x đang xét)
Với \(-5\le x< 2\), ta có: x + 5 \(\le\)0; x - 2 < 0 => |x+5| = x+5; |x-2| = 2-x
=> x+5 + 3.(2-x) = 14 + x=> x = -1 (thỏa mãn các giá trị x đang xét)
Với \(x\ge2\), ta có: x+ 5 > 0; x - 2 \(\ge\)0 => |x+5| = x+5; |x-2| = x-2
=> x+5 + 3.(x-2) = 14 + x => x = 5 (thỏa mãn các giá trị x đang xét)
Vậy phương trình đã cho có tập nghiệm là \(S=\left\{-1;5\right\}\)
nha.. Chúc bn hc tốt
mấy cái đoạn với hơi khó hiểu 1 chút
bạn có thể giúp giải rõ ràng hơn ko
Cái này hình như là toán lớp 6 chứ nhẩy
\(\frac{x+3}{x+8-3}=\frac{x+3}{x+5}=\frac{5}{6}\)
=>6(x+3)=5(x+5)
=>6x+18=5x+25
=>6x-5x=25-18=7
=>x=7