cho a,b,c thỏa :6a+3b+2c=abc. Tim GTLN
B=\(\frac{1}{\sqrt{a^2+1}}\)+\(\frac{2}{\sqrt{b^2+4}}\)+\(\frac{3}{\sqrt{c^2+9}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân 2 vế của giả thiết với \(abc\) ta có: \(ab+bc+ca=abc\)
Ta có: \(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3a}{4}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^2}{b+ca}+\frac{b+c}{8}+\frac{b+a}{8}\ge\frac{3b}{4};\frac{c^2}{c+ab}+\frac{c+a}{8}+\frac{c+b}{8}\ge\frac{3c}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\frac{4a+4b+4c}{8}\ge\frac{3a+3b+3c}{4}\)
\(\Leftrightarrow VT+\frac{2a+2b+2c}{4}\ge\frac{3a+3b+3c}{4}\Leftrightarrow VT\ge VP\)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
\(\Rightarrow ab+bc+ca=abc\)
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
\(VT=\frac{a^3}{a^2+ab+bc+ca}+\frac{b^3}{b^2+ab+bc+ca}+\frac{c^3}{c^2+ab+bc+ca}\)
\(VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(a+c\right)\left(b+c\right)}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\\\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\\\frac{c^3}{\left(a+c\right)\left(b+c\right)}+\frac{a+c}{8}+\frac{b+c}{8}\ge3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\end{cases}}\)
\(\Rightarrow\)\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(a+c\right)\left(b+c\right)}+\frac{a+b+c}{2}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(a+c\right)\left(b+c\right)}\ge\frac{a+b+c}{4}\)
\(\Leftrightarrow\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\left(đpcm\right)\)
Mk hâm mộ Sơn Tùng.Bạn có thể kb với mk ko,mk hết lượt rồi!
Ta có:
\(\hept{\begin{cases}a^2+b^2+c^2=14\\a+2b+3c=14\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=14\\2a+4b+6c=28\end{cases}}}\)
\(\Rightarrow a^2+b^2+c^2-2a-4b-6c=-14\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)
\(\Leftrightarrow a=1;c=2;c=3\)
Vậy \(T=abc=6\)
Đặt \(x=a;y=\frac{b}{2};z=\frac{c}{3}\left(x,y,z>0\right)\) và\(x+y+z=xyz\)
Khi đó ta có: \(B=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{xyz}{x^2\left(x+y+z\right)+xyz}}\le\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\le\frac{y}{2\left(x+y\right)}+\frac{z}{2\left(x+z\right)}\)
Tương tự có: \(\frac{1}{\sqrt{1+y^2}}\le\frac{x}{2\left(x+y\right)}+\frac{z}{2\left(y+z\right)};\frac{1}{\sqrt{1+z^2}}\le\frac{x}{2\left(x+z\right)}+\frac{y}{2\left(y+z\right)}\)
\(\Rightarrow B\le\frac{x+y}{2\left(x+y\right)}+\frac{x+z}{2\left(x+z\right)}+\frac{y+z}{2\left(y+z\right)}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\Rightarrow\hept{\begin{cases}a=\sqrt{3}\\b=2\sqrt{3}\\c=3\sqrt{3}\end{cases}}\)
c.ơn thắng nguyễn nhiu nha