K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2019

a) ta có: AM = AN ( = 1/2AB = 1/2AC)

=> AMN cân tại A

b) Xét tg ABN và tg ACM

có: AB = AC

^A chung

AN = AM ( = 1/2AB = 1/2AC)

=> tg ABN = tg ACM (c-g-c)

=> BN = CM

c) Xét tg ABC
có: BN cắt CM tại I

=> AI là đường trung tuyến của BC

=> AI là tia pg ^A ( tg ABC cân tại A)

d) ta có: tg ABC cân tại A

AI là đường phân giác

=> AI là đg cao

\(\Rightarrow AI\perp BC\)

ta có: tg AMN cân tại A

AI là đường cao

=> AI vuông góc với MN

...

hình tự vẽ

23 tháng 1 2019

(x-1)(x-3) >0 
<=> x^2-4x+3>0 
<=>x^2-2x2+4-1>0 
<=>(x-2)^2>1 
<=>x-2>1 
<=>x>3 

23 tháng 1 2019

(x-1)(x-3)>0 khi: 
TH1: x-1>0 và x-3>0 <=>x>1 và x>3 =>x>3 (vì x>3 thì chắc chắn sẽ lớn hơn 1) 
TH2: x-1<0 và x-3<0 <=>x<1 và x<3 =>x<1 (vì x<1 thì chắc chắn sẽ bé hơn 3) 
Vậy x>3 hoặc x<1 thì (x-1)(x-3)>0 

23 tháng 1 2019

2.5=10

hok tốt

23 tháng 1 2019

2.5=10 (free k nha)

23 tháng 1 2019

chứng minh bài toán theo cách quy nạp toán học.  

Với n=2 suy ra:\(\frac{1}{3}+\frac{1}{4}>\frac{13}{14}\left(TM\right)\)

Giả sử bài toán trên đúng với mọi n=k,ta cần chứng minh nó đúng với n=k+1,tức là:

\(S_k=\frac{1}{k+2}+\frac{1}{k+3}+\frac{1}{k+4}+....+\frac{1}{2\left(k+1\right)}>\frac{13}{14}\)

Thật vậy:

\(\frac{1}{k+2}+\frac{1}{k+3}+...+\frac{1}{2\left(k+1\right)}\)

\(=\frac{1}{k+1}+\frac{1}{k+2}+....+\frac{1}{2k}+\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}\)

\(=S_k+\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}\)

\(>\frac{13}{14}+\frac{2k+2}{2\left(k+1\right)\left(2k+1\right)}+\frac{2k+1}{2\left(k+1\right)\left(2k+1\right)}-\frac{2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)

\(=\frac{13}{14}+\frac{2\left(k+1\right)+2k+1-2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)

23 tháng 1 2019

để dễ hiểu,,mik xin viết thêm nha(không phải để kiếm điểm,có người nhờ nên mới thế này:))

\(\frac{13}{14}+\frac{2\left(k+1\right)+2k+1-2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)

\(=\frac{13}{14}+\frac{1}{2\left(k+1\right)\left(2k+1\right)}>\frac{13}{14}\left(k>1\right)\)

\(\Rightarrow S_{k+1}>\frac{13}{14}\)

\(\Rightarrow S_k>\frac{13}{14}\)

Phép chứng minh hoàn tất_._

23 tháng 1 2019

2+1=3

OK chúng mk sẽ ko dùng.

23 tháng 1 2019

2+1=3 bn a free k

23 tháng 1 2019

Câu hỏi của Trần Anh Đại  nếu ko vào được ib vs tui  để biết thêm chi tiết!

12 tháng 3 2019

Câu hỏi của Trần Anh Đại:bạn tham khảo tại đây!

23 tháng 1 2019

Ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\)thật vậy :

Giả sử : \(a\ge b\)không làm mất tính tổng quát của bài toán :

\(\Rightarrow a=m+b\left(m\ge0\right)\)

Ta có : \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}=1+\frac{m}{b}+\frac{b}{b+m}\)

\(\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

Tương tự : \(\frac{b}{c}+\frac{c}{b}\ge2;\frac{a}{c}+\frac{c}{a}\ge2\)

\(\Rightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge3+2+2+2=9\left(đpcm\right)\)

23 tháng 1 2019

làm dài vậy??

Áp dụng BĐT cauchy cho 3 số ta được:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(a+b+c\ge\sqrt[3]{abc}\)

Nhân vế theo vế của 2 BĐT ta được:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\sqrt[3]{\frac{abc}{abc}}=9\left(đpcm\right)\)