Cho hình hộp chữ nhật ABCD . A'B'C'D' có: AB = 4cm; AC = 5cm và A'C = 13cm.
Tính thể tích và diện tích xung quanh của hình hộp chữ nhật đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(3A=\frac{3x^2}{x^4+x^2+1}=\frac{x^4+x^2+1-x^4+2x^2-1}{x^4+x^2+1}=\frac{\left(x^4+x^2+1\right)-\left(x^2-1\right)^2}{x^4+x^2+1}\)
\(=1-\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\le1\)
\(\Leftrightarrow3A\le1\Rightarrow A\le\frac{1}{3}\)có GTLN là \(\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\pm1\)
\(x^3+3x=x^2y+2y+5\)
\(\Leftrightarrow\)\(x^3+3x-5=y\left(x^2+2\right)\)
\(\Leftrightarrow\)\(y=\frac{x^3+3x-5}{x^2+2}=x+\frac{x-5}{x^2+2}\)
Vì \(y\in Z\)nên \(x-5\)\(⋮\)\(x^2+2\)
\(\Leftrightarrow\) \(\left(x-5\right)\left(x+5\right)\)\(⋮\)\(x^2+2\)
\(\Leftrightarrow\) \(x^2-25\)\(⋮\)\(x^2+2\)
\(\Leftrightarrow\) \(x^2-25-\left(x^2+2\right)\) \(⋮\) \(x^2+2\)
\(\Leftrightarrow\) \(27\)\(⋮\)\(x^2+2\)
Mà \(x\in Z\) ; \(x^2+2\ge2\)nên : \(x^2+2\)\(\in\left\{\pm3;\pm27\right\}\)
đến đây tìm x rồi thay vào tìm y
Tam giác vuông AA'C có: AC = 5 ( cm ) ( gt ) ; A'C = 13 ( cm ) ( gt )
Suy ra AA' = 12 ( cm )
Tam giác vuông ABC có: AB = 4 ( cm ) ( gt ) AC = 5 ( cm ) ( gt )
Suy ra BC = 3 ( cm ) ( Áp dụng định lý PiTaGo nha bạn )
Nên diện tích xung quanh của hình hộp chữ nhật là: \(2.\left(3+4\right).12=168\left(cm^2\right)\)
Thể tích của hình hộp chữ nhật là: \(3.4.12=144\left(cm^3\right)\)