cho hình hộp chữ nhật ABCD A'B'C'D' co AB = 10cm BC = 20 cm AA' = 15 cm
a. tính thể tích hình hộp chữ nhật
b. tính độ dài đường chéo AC'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2>=2xy\Rightarrow\frac{x}{x^2+y^2}< =\frac{x}{2xy}=\frac{1}{2y}\)(1)
\(y^2+z^2>=2yz\Rightarrow\frac{y}{y^2+z^2}< =\frac{y}{2yz}=\frac{1}{2z}\)(2)
\(x^2+z^2>=2xz\Rightarrow\frac{z}{x^2+z^2}< =\frac{z}{2xz}=\frac{1}{2x}\)(3)
từ (1) (2) (3)\(\Rightarrow\frac{x}{x^2+y^2}+\frac{y}{y^2+z^2}+\frac{z}{x^2+z^2}< =\frac{1}{2y}+\frac{1}{2z}+\frac{1}{2x}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)(đpcm)
a) Xét \(\Delta RAB\)và \(\Delta QAD\)có:
\(\widehat{RAB}=\widehat{QAD}\) (cùng phụ với góc BAQ)
\(AB=AD\) (gt)
\(\widehat{RBA}=\widehat{QDA}=90^0\)
suy ra: \(\Delta RAB=\Delta QAD\) (g.c.g)
\(\Rightarrow\) \(AR=AQ\)
\(\Rightarrow\) \(\Delta AQR\)vuông cân tại A
chứng minh tương tự được: \(\Delta APS\)vuông cân tại A
b) \(\Delta AQR\)cân tại A, AM là trung tuyến => AM đồng thời là đường cao
\(\Rightarrow\)\(\widehat{AMH}=90^0\) (1)
\(\Delta ASP\)cân tại A, AN là trung tuyến => AN đồng thời là đường cao
\(\Rightarrow\)\(\widehat{ANH}=90^0\) (2)
\(\Delta RSP\) có \(PA\perp RS;\) \(SC\perp RP;\) \(PA\Omega SC=Q\)
\(\Rightarrow\)\(Q\)là trực tâm \(\Delta RSP\)
\(\Rightarrow\)\(RQ\perp PS\)
hay \(RH\perp PS\)\(\Rightarrow\)\(\widehat{RHS}=90^0\) (3)
Từ (1), (2), (3) suy ra \(AMHN\)là hình chữ nhật
c) RC là đường cao \(\Delta SQR\)
SH là đường cao \(\Delta SQR\)
mà \(RC\Omega SH=P\)
\(\Rightarrow\)P là trực tâm \(\Delta SQR\)
d) \(\Delta ARQ\) vuông tại A có AM là trung tuyến
\(\Rightarrow\)\(AM=\frac{1}{2}RQ\)
\(\Delta RCQ\) vuông tại C có CM là trung tuyến
\(\Rightarrow\)\(CM=\frac{1}{2}RQ\)
suy ra: \(AM=CM\)
\(\Rightarrow\)\(M\)thuộc trung trực AC
chứng minh tương tự đc: N thuộc trung trực AC
suy ra: MN là trung trực AC
e) Ta có: MN là trung trực AC
BD là trung trực AC (do ABCD là hình vuông)
=> M, B, N, D thẳng hàng
p/s: hình tự vẽ
a) Fe+2HCl ->FeCl2+H2
b)số mol của sắt là n=28/56=0,5 mol
theo phương trình hóa học
Fe+2HCl2 ->FeCl2+H2
0,5mol----------------->0,5mol
vậy thể tích của khí H2 thu dược ở điều kiện tiêu chuẩn là
V=0,5.22,4=11,2 lít
a)Fe + 2HCl -> FeCl2 + H2
b) nFe=m/M=28/56=0,5(mol)
PTHH: Fe + 2HCl -> FeCl2 + H2
mol: 0,5----------------------->0,5
V=n.22,4=0,5.22,4=11,2(l)
c)PTHH: H2 + CuO -> Cu +H2O
mol: 0,5------------->0,5
=>mCu=n.M=0,5.64=32(g)
Gọi số sản phẩm được giao là x(sản phẩm)(x>0,x∈N∈N)
Theo bài ra ta có pt: \(\frac{\frac{x}{2}}{120}\)+\(\frac{x}{\frac{2}{120+30}}\)= 10<=>\(\frac{x}{240}\)+\(\frac{x}{300}\)=10
<=>\(\frac{300x+240x}{72000}\)=\(\frac{720000}{72000}\)=> 540x = 720000 =>x=1333,3
mình bổ sung thêm đề: a,b dương
BÀI LÀM
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)
\(=\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\) (thay a+b = 1)
\(=\left(1+\frac{a}{a}+\frac{b}{a}\right)\left(1+\frac{a}{b}+\frac{b}{b}\right)\)
\(=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)
\(=4+2\left(\frac{a}{b}+\frac{b}{a}\right)+\frac{b}{a}.\frac{a}{b}\)
\(=5+2\left(\frac{a}{b}+\frac{b}{a}\right)\) \(\ge5+2.2=9\) (1)
c/m: \(\frac{a}{b}+\frac{b}{a}\ge2\) với a,b dương
\(\Leftrightarrow\) \(\frac{a^2}{ab}+\frac{b^2}{ab}\ge\frac{2ab}{ab}\)
\(\Leftrightarrow\)\(\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\ge0\)
\(\Leftrightarrow\)\(\frac{\left(a-b\right)^2}{ab}\ge0\) luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
Vậy BĐT (1) đã được chứng minh
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=\frac{1}{2}\)
Theo Cauchy , ta có \(a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\frac{a+b}{2}\)
Áp dụng bất đẳng thức Bunyakovsky , ta có :
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge\left(1+\frac{1}{\sqrt{a}.\sqrt{b}}\right)^2\ge\left(1+\frac{1}{\frac{\left(a+b\right)}{2}}\right)^2=\left(1+2\right)^2=9\)
Đẳng thức xảy ra <=> a = b = 1/2
a) Diện tích đáy hình hộp chữ nhật:
\(AB.AC=10.20=200\left(cm^2\right)\)
Thể tích hình hộp chữ nhật:
\(V=S.h=200.15=3000\left(cm^3\right)\)
b) tam giác A'B'C' vuông tại B. Áp dụng định lý PITAGO ta có:
\(A'C'=\sqrt{A'B'^2+B'C'^2}=\sqrt{10^2+20^2}=10\sqrt{5}\left(cm\right)\)
\(\Rightarrow AC'=\sqrt{AA'+A'C'^2}=\sqrt{15^2+10^2.5}=5\sqrt{29}\left(cm\right)\)