Ê hoàng giúp tớ với :
tính tổng sau :
\(P=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{\left(4n-3\right)\left(4n+1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thôi động viên các bạn làm phần nào cũng 6 tích nhé. Làm bao nhiêu phần thì số tích nhân lên .
Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c
=> p - a = (a + b + c)/2 - a
=> p - a = (b + c + a - 2a)/2
=> p - a = (b + c - a)/2
=> 2(p - a) = b + c - a (1)
Tương tự ta chứng minh được:
2(p - b) = a + c - b (2)
2(p - c) = a + b - c (3)
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b)
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ]
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ]
Bây giờ ta đã đưa bài toán về chứng minh
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Ta có: (x - y)² ≥ 0
<=> x² - 2xy + y² ≥ 0
<=> x² - 2xy + y² + 4xy ≥ 4xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
=> với x + y ≠ 0 và xy ≠ 0
=> (x + y)²/(x+ y) ≥ 4xy/(x + y)
=> (x + y) ≥ 4xy/(x + y)
=> (x + y)/xy ≥ (4xy)/[xy(x + y)]
=> 1/x + 1/y ≥ 4/(x + y) (*)
Áp dụng (*) với x = p - a và y = p - b ta được:
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4)
Chứng minh tương tự ta được:
1/(p - a) + 1/(p - c) ≥ 4/b (5)
1/(p - b) + 1/(p - c) ≥ 4/a (6)
Cộng vế với vế của (4);(5) và (6) ta được:
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c)
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c)
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) )
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Dấu bằng xảy ra <=> a = b = c.
Sai thì thôi nha !!! k mk nha
\(a,b\in N,a,b>0\Rightarrow\sqrt{ab}>0\Rightarrow2\sqrt{ab}>0\)
\(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\Leftrightarrow a+b+2\sqrt{ab}>a+b\Leftrightarrow2\sqrt{ab}>0\left(\text{luôn đúng}\right)\)
ta có đpcm
\(\left|x+1\right|+\left|x+4\right|=3x\)
\(\Rightarrow1+x+4+x=3x\)
\(\Rightarrow5+2x=3x\)
\(\Rightarrow5=3x-2x\)
\(\Rightarrow5=x\)
vào link này bn nhé!!Câu hỏi của trần thị my - Toán lớp 7 - Học toán với OnlineMath
1. tác dụng nhiệt: dây dẫn có dòng điện chạy qua bị nóng lên ;bàn ủi
2. tác dụng phát sáng: bóng đèn điôt ; dòng điện chạy qua bóng đèn bút thử điện làm nó sáng lên
3. tác dụng từ: chuông đồng hồ ; dòng điện chạy qua cuộn dây dẫn quấn quanh lõi sắt non làm cho nó hút được các vật bằng sắt thép
4. tác dụng hóa học: mạ kim loại ;dòng điện chạy qua dd đồng sunfat làm cho thỏi than nối với cực âm bị bám một lớp đồng
5. tác dụng sinh lí: máy kích tim ;dòng điện chạy qua cơ thể người làm tim ngừng đập, cơ co giật...
Thôi được rồi .
Giải:
\(P=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{\left(4n-3\right)\left(4n+1\right)}\)
\(\Rightarrow4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{\left(4n-3\right)\left(4n+1\right)}\)
\(=\frac{5-1}{1.5}+\frac{9-5}{5.9}+...+\frac{\left(4n+1\right)-\left(4n-3\right)}{\left(4n-3\right)\left(4n+1\right)}\)
\(=\left(\frac{1}{1}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+...+\frac{1}{4n-3}-\frac{1}{4n+1}\)
\(=1-\frac{1}{4n+1}=\frac{4n}{4n+1}\)
Vậy \(A=\frac{4n}{4n+1}\)
cảm ơn nha