Tìm \(x\) biết:
\(\dfrac{2}{3}\) + \(\dfrac{7}{4}\) \(:x=\dfrac{5}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5^4.18^4}{125.9^5.16}\\ =\dfrac{5^4.\left(2.3^2\right)^4}{5^3.\left(3^2\right)^5.2^4}\\ =\dfrac{5^4.2^4.3^8}{5^3.2^4.3^{10}}\\ =\dfrac{5}{3^2}\\ =\dfrac{5}{9}\)
26.
\(a.\left(\dfrac{3}{7}\right)^5\cdot x=\left(\dfrac{3}{7}\right)^7\\ =>x=\left(\dfrac{3}{7}\right)^7:\left(\dfrac{3}{7}\right)^5\\ =>x=\left(\dfrac{3}{7}\right)^{7-5}\\ =>x=\left(\dfrac{3}{7}\right)^2\\ =>x=\dfrac{9}{49}\\ b.\left(0,09\right)^3x=-\left(0,09\right)^2\\ =>\left[\left(0,3\right)^2\right]^3\cdot x=-\left[\left(0,3\right)^2\right]^2\\ =>x=-\left(0,3\right)^4:\left(0,3\right)^6\\ =>x=-\left(0,3\right)^{-2}\\ =>x=-\left(\dfrac{10}{3}\right)^2\\ =>x=-\dfrac{100}{9}\)
27:
a: Vì \(0< \dfrac{1}{2}< 1\)
và 40<50
nên \(\left(\dfrac{1}{2}\right)^{40}>\left(\dfrac{1}{2}\right)^{50}\)
b: \(243^3=\left(3^5\right)^3=3^{15};125^5=\left(5^3\right)^5=5^{15}\)
mà 3<5
nên \(243^3< 125^5\)
\(-\dfrac{2}{5}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}\\ =\left(\dfrac{-2}{5}+\dfrac{-2}{5}\right)+\left(\dfrac{3}{4}+\dfrac{1}{6}\right)\\ =\dfrac{-4}{5}+\left(\dfrac{9}{12}+\dfrac{2}{12}\right)\\ =\dfrac{-4}{5}+\dfrac{11}{12}\\ =\dfrac{-48}{60}+\dfrac{55}{60}\\ =\dfrac{55-48}{60}\\ =\dfrac{7}{60}\)
Đặt: \(\dfrac{x}{3}=\dfrac{y}{5}=k=>\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
Mà:
\(2x^2+y^2=43\\ =>2\cdot\left(3k\right)^2+\left(5k\right)^2=43\\ =>18k^2+25k^2=43\\ =>43k^2=43\\ =>k^2=1\\ =>k=\pm1\\ TH1:k=1=>\left\{{}\begin{matrix}x=3\cdot1=3\\y=5\cdot1=5\end{matrix}\right.\\ TH2:k=-1=>\left\{{}\begin{matrix}x=3\cdot\left(-1\right)=-3\\y=5\cdot\left(-1\right)=-5\end{matrix}\right.\)
a: Xét ΔAHK vuông tại H và ΔDHB vuông tại H có
HA=HD
HK=HB
Do đó: ΔAHK=ΔDHB
b: ΔAHK=ΔDHB
=>\(\widehat{HAK}=\widehat{HDB}\)
=>AK//DB
c: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
=>BA=BD
d: Xét ΔHAB vuông tại H và ΔHDK vuông tại H có
HA=HD
HB=HK
Do đó: ΔHAB=ΔHDK
=>\(\widehat{HAB}=\widehat{HDK}\)
=>AB//DK
ta có: IK\(\perp\)AC
AB\(\perp\)AC
Do đó: IK//AB
mà DK//AB
và IK,DK có điểm chung là K
nên I,K,D thẳng hàng
Ta có:
\(\dfrac{1}{2}< \dfrac{x}{10}< \dfrac{4}{5}\\ \Rightarrow\dfrac{5}{10}< \dfrac{x}{10}< \dfrac{8}{10}\\ \Rightarrow5< x< 8\)
Vì \(x\) nguyên nên:
\(x\in\left\{6,7\right\}\)
Vậy \(x\in\left\{6,7\right\}\)
\(125^7:25^{16}\\ =\left(5^3\right)^7:\left(5^2\right)^{16}\\ =5^{3\cdot7}:5^{2\cdot16}\\ =5^{21}:5^{32}\\ =5^{21-32}\\ =5^{-11}\)
\(\dfrac{2}{3}+\dfrac{7}{4}:x=\dfrac{5}{6}\\ \Rightarrow\dfrac{7}{4}:x=\dfrac{5}{6}-\dfrac{2}{3}\\\Rightarrow\dfrac{7}{4}:x=\dfrac{1}{6} \\ \Rightarrow x=\dfrac{7}{4}:\dfrac{1}{6}\\ \Rightarrow x=\dfrac{21}{2}\)
Vậy \(x=\dfrac{21}{2}\)
\(\dfrac{2}{3}+\dfrac{7}{4}:x=\dfrac{5}{6}\)
=> \(\dfrac{7}{4}:x=\dfrac{5}{6}-\dfrac{2}{3}\)
=> \(\dfrac{7}{4}:x=\dfrac{5}{6}-\dfrac{4}{6}\)
=> \(\dfrac{7}{4}:x=\dfrac{1}{6}\)
=> \(x=\dfrac{7}{4}:\dfrac{1}{6}\)
=> x = \(\dfrac{7}{4}.6\)
=> \(x=\dfrac{21}{2}\)
Vậy ...