Cho (x^2-x+1)/(x-1)
c) Tìm x để A > 1;
d) Tìm x nguyên để A nguyên.
Help mee!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\ne-1\)
\(x^2+x=0\)
=>x(x+1)=0
=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Khi x=0 thì \(A=\dfrac{0-3}{0+1}=\dfrac{-3}{1}=-3\)
b: \(Q=A\cdot B\)
\(=\dfrac{x-3}{x+1}\left(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\right)\)
\(=\dfrac{x-3}{x+1}\left(\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x-3}{x+1}\cdot\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{1}{x+1}\cdot\dfrac{x^2+6x+9}{x+3}=\dfrac{x+3}{x+1}\)
a: Vì OA và OB là hai tia đối nhau
nên O nằm giữa A và B
=>AB=OA+OB=6+2=8(cm)
b: I là trung điểm của AB
=>\(IA=IB=\dfrac{AB}{2}=4\left(cm\right)\)
Vì AI<AO
nên I nằm giữa A và O
=>AI+IO=AO
=>IO+4=6
=>IO=2(cm)
=>OA=3IO
c: Các góc đỉnh O có trên hình là \(\widehat{xOt};\widehat{xOz};\widehat{xOy};\widehat{tOz};\widehat{tOy};\widehat{zOy}\)
\(A=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\)
Do \(\left(x-3\right)^2\ge0;\forall x\Rightarrow-\left(x-3\right)^2\le0;\forall x\)
\(\Rightarrow A\le0\Rightarrow A_{max}=0\) khi \(x=3\)
\(B=4x^2-4x+1+14=\left(2x-1\right)^2+14\)
Do \(\left(2x-1\right)^2\ge0;\forall x\Rightarrow\left(2x-1\right)^2+14\ge14;\forall x\)
\(\Rightarrow B_{min}=14\) khi \(2x-1=0\Rightarrow x=\dfrac{1}{2}\)
a.
\(\left(x+2y\right)^2-\left(x-2y\right)^2=\left(x+2y+x-2y\right)\left(x+2y-x+2y\right)=2x.4y=8xy\)
b.
\(\left(3x+2y\right)^2-\left(3x+2y\right)\left(6y-4x\right)+\left(2x-3y\right)^2\)
\(=\left(2x+3y\right)^2+2\left(2x+3y\right)\left(2x-3y\right)+\left(2x-3y\right)^2\)
\(=\left(2x+3y+2x-3y\right)^2\)
\(=\left(4x\right)^2=16x^2\)
\(\dfrac{x-2}{\sqrt{x}+\sqrt{2}}=\dfrac{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}{\sqrt{x}+\sqrt{2}}=\sqrt{x}-\sqrt{2}\)
\(4x^2-25+\left(2x+5\right)^2=0\\ < =>\left[\left(2x\right)^2-5^2\right]+\left(2x+5\right)^2=0\\ < =>\left(2x+5\right)\left(2x-5\right)+\left(2x+5\right)^2=0\\ < =>\left(2x+5\right)\left(2x-5+2x+5\right)=0\\ < =>4x\left(2x+5\right)=0\\ < =>\left[{}\begin{matrix}4x=0\\2x+5=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\2x=-5\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy: ...
\(\left(2x-\dfrac{1}{3}\right)^2=-\dfrac{8}{15}\times\dfrac{15}{27}:\left(2x-\dfrac{1}{3}\right)\)
\(\left(2x-\dfrac{1}{3}\right)^2\times\left(2x-\dfrac{1}{3}\right)=-\dfrac{8}{27}\)
\(\left(2x-\dfrac{1}{3}\right)^3=\left(-\dfrac{2}{3}\right)^3\)
\(2x-\dfrac{1}{3}=-\dfrac{2}{3}\)
\(2x=\dfrac{1}{3}-\dfrac{2}{3}\)
\(2x=-\dfrac{1}{3}\)
\(x=-\dfrac{1}{6}\)
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC
Xét ΔABC có
CD,BE là các đường cao
CD cắt BE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
ĐKXĐ: \(x\ne1\)
c: Để A>1 thì \(A-1>0\)
=>\(\dfrac{x^2-x+1}{x-1}-1>0\)
=>\(\dfrac{x^2-x+1-x+1}{x-1}>0\)
=>\(\dfrac{x^2-2x+2}{x-1}>0\)
mà \(x^2-2x+2=\left(x-1\right)^2+1>=1>0\forall x\)
nên x-1>0
=>x>1
d: Để A nguyên thì \(x^2-x+1⋮x-1\)
=>\(x\left(x-1\right)+1⋮x-1\)
=>\(1⋮x-1\)
=>\(x-1\in\left\{1;-1\right\}\)
=>\(x\in\left\{2;0\right\}\)
Để giải các bài toán liên quan đến hàm số \[ A = \frac{x^2 - x + 1}{x - 1}, \] ta cần phân tích hàm số này.
### 1. Tìm điều kiện để \( A > 1 \)
Để tìm các giá trị của \( x \) sao cho \( A > 1 \), ta sẽ làm theo các bước sau:
1. **Biến đổi hàm số**:
\[
A = \frac{x^2 - x + 1}{x - 1}
\]
Ta phân tích phân thức này bằng cách chia \( x^2 - x + 1 \) cho \( x - 1 \) bằng phép chia đa thức:
**Chia \( x^2 - x + 1 \) cho \( x - 1 \):**
- Chia \( x^2 \) cho \( x \) được \( x \).
- Nhân \( x \) với \( x - 1 \) được \( x^2 - x \).
- Trừ \( x^2 - x \) khỏi \( x^2 - x + 1 \) ta còn dư \( 1 \).
Vậy,
\[
\frac{x^2 - x + 1}{x - 1} = x + \frac{2}{x - 1}
\]
2. **Đặt điều kiện \( A > 1 \)**:
\[
x + \frac{2}{x - 1} > 1
\]
- Trừ 1 từ cả hai vế:
\[
x + \frac{2}{x - 1} - 1 > 0
\]
- Kết hợp các hạng tử:
\[
x - 1 + \frac{2}{x - 1} > 0
\]
- Đặt \( t = x - 1 \), ta có:
\[
t + \frac{2}{t} > 0
\]
- Phân tích bất phương trình:
\[
t^2 + 2 > 0
\]
Vì \( t^2 + 2 \) luôn dương (bất kể giá trị của \( t \)), bất phương trình luôn đúng với mọi giá trị của \( t \neq 0 \). Do đó, điều kiện để \( A > 1 \) là \( x \neq 1 \).
### 2. Tìm giá trị nguyên của \( x \) sao cho \( A \) là số nguyên
1. **Biến đổi hàm số**:
\[
A = x + \frac{2}{x - 1}
\]
Để \( A \) là số nguyên, thì \(\frac{2}{x - 1}\) phải là số nguyên. Điều này có nghĩa là \( x - 1 \) phải là một ước của 2.
2. **Tìm các ước của 2**:
- Các ước của 2 là \( \pm 1, \pm 2 \).
3. **Tìm các giá trị tương ứng của \( x \)**:
- Nếu \( x - 1 = 1 \), thì \( x = 2 \).
- Nếu \( x - 1 = -1 \), thì \( x = 0 \).
- Nếu \( x - 1 = 2 \), thì \( x = 3 \).
- Nếu \( x - 1 = -2 \), thì \( x = -1 \).
4. **Kiểm tra các giá trị**:
- Với \( x = 2 \):
\[
A = \frac{2^2 - 2 + 1}{2 - 1} = \frac{3}{1} = 3
\]
- Với \( x = 0 \):
\[
A = \frac{0^2 - 0 + 1}{0 - 1} = \frac{1}{-1} = -1
\]
- Với \( x = 3 \):
\[
A = \frac{3^2 - 3 + 1}{3 - 1} = \frac{7}{2} = 3.5
\]
(Không phải là số nguyên)
- Với \( x = -1 \):
\[
A = \frac{(-1)^2 - (-1) + 1}{-1 - 1} = \frac{3}{-2} = -1.5
\]
(Không phải là số nguyên)
### Kết quả:
- **Điều kiện để \( A > 1 \)** là \( x \neq 1 \).
- **Các giá trị nguyên của \( x \) để \( A \) là số nguyên** là \( x = 0 \) và \( x = 2 \).