cho x/a + y/b + z/c=0 và a/x + b/y + c/z=2
tính A= x2/a2 + y2/b2 +z2/c2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=2x-6/(x+1)(x-1):1-2x/(x+1)(x-1)
=3x-6/1-2x
b) A>-1<=>3x-6/1-2x>-1<=>3x-6>-1+2x
<=>x>5
Vì 1/x + 1/y + 1/z = 0 nên lần lượt nhân vs x; y; z ta có:
1 + x/y + x/z = 0 (1)
1 + y/z + y/x = 0 (2)
1 + z/x + z/y = 0 (3)
Từ (1); (2); (3) suy ra : x/y + y/z + z/x + x/z + y/x + z/y = - 3 (*)
Mặt khác : 1/x + 1/y + 1/z = 0 nên quy đồng lên ta có:
(xy + yz + zx)/xyz = 0 hay xy + yz + zx = 0
Hay : (1/x^2 + 1/y^2 + 1/z^2).(xy + yz + zx) = 0
khai triển ra :
yz/x^2 + zx/y^2 + xy/z^2 + x/y + y/z + z/x + x/z + y/x + z/y = 0
Vậy : yz/x^2 + zx/y^2 + xy/z^2 = - (x/y + y/z + z/x + x/z + y/x + z/y) = 3 (theo (*))
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)
\(\Rightarrow(\frac{1}{x}+\frac{1}{y})^3=(\frac{-1}{z})^3\)
\(\Rightarrow\frac{1}{x^3}+3\frac{1}{x^2}\frac{1}{y}+3\frac{1}{x}\frac{1}{y^2}+\frac{1}{y^3}=\frac{-1}{z^3}\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{x}\frac{1}{y}(\frac{1}{x}+\frac{1}{y})\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{x}\frac{1}{y}\frac{1}{z}\)
\(\Rightarrow(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3})xyz=3\frac{1}{x}\frac{1}{y}\frac{1}{z}\cdot xyz\)
\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=3\)
Áp dụng bđt x^2+y^2>=2xy ta có:
a^2/b^2+c^2/a^2 >=2 c/b
b^2/c^2+c^2/a^2 >=2 b/a
a^2/b^2 +b^2/c^2>=2 a/c
cộngg thoe từng vế :
2 VT>= 2VP
=>VT>=VP(dpcm)
dau "=" xảy ra khi a=b=c
hmm..
Đặt \(\left(x;y;z\right)=\left(a+b-c;b+c-a;c+a-b\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{cases}}\)
Bất đẳng thức cần chứng minh tương đương với:
\(\frac{\left(x+y\right)\left(x+z\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}+\frac{\left(z+x\right)\left(z+y\right)}{4z}\ge x+y+z\)
Ta có:\(\frac{\left(x+y\right)\left(x+z\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}+\frac{\left(z+x\right)\left(z+y\right)}{4z}\)
\(=\frac{x^2+xy+xz+yz}{4x}+\frac{xy+yz+y^2+zx}{4y}+\frac{zx+zy+z^2+xy}{4z}\)
\(=\frac{3\left(x+y+z\right)}{4}+\frac{1}{4}\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)\(=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left(\frac{y^2z^2}{xyz}+\frac{z^2x^2}{xyz}+\frac{x^2y^2}{xyz}\right)\)
\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left[\frac{\left(xy+yz+zx\right)^2}{3xyz}\right]\)\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left[\frac{3xyz\left(x+y+z\right)}{3xyz}\right]\)
\(=x+y+z\)
Bất đẳng thức đã được chứng minh.
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
x^4-4x^3+5x^2-2x-20
=x^4-4x^3+4x^2+x^2-2x-20
=x^2(x^2-4x+4)+x^2-2x-20
=x^2(x-2)^2 + x^2-2x+1-21
=x^2(x-2)^2+(x-1)^2-21=0
<=>x^2(x-2)^2+(x-1)^2=21
từ đây bạn giải ra cx này phải đề là tìm nghiệm nguyên nhé :D
shitbo không biết làm thì thôi ...
\(x^4-4x^3+5x^2-2x-20=0\)
\(\Leftrightarrow\left(x^2-2x\right)^2+x^2-2x-20=0\)
Đặt \(x^2-2x=a\left(a\ge-1\right)\)
\(\Rightarrow pt:a^2+a-20=0\)
\(\Leftrightarrow\left(a-4\right)\left(a+5\right)=0\)
\(\Leftrightarrow a=4\left(Do\text{ }a\ge-1\right)\)
\(\Leftrightarrow x^2-2x=4\)
\(\Leftrightarrow\left(x-1\right)^2=5\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{5}\\x-1=-\sqrt{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}+1\\x=-\sqrt{5}+1\end{cases}}\)
\(\left(x+2\right)\left(x+3\right)\left(x+8\right)\left(x+12\right)-3x^2=0\)
\(\Leftrightarrow\left[\left(x+2\right)\left(x+12\right)\right]\left[\left(x+3\right)\left(x+8\right)\right]-3x^2=0\)
\(\Leftrightarrow\left(x^2+14x+24\right)\left(x^2+11x+24\right)-3x^2=0\)
Đặt \(x^2+11x+24=a\)
\(\Rightarrow pt:a\left(a+3x\right)-3x^2=0\)
\(\Leftrightarrow a^2+3ax-3x^2=0\)
\(\Leftrightarrow4a^2+12ax-12x^2=0\)
\(\Leftrightarrow\left(2a+3x\right)^2=21x^2\)
\(\Leftrightarrow\orbr{\begin{cases}2a+3x=x\sqrt{21}\\2a+3x=-x\sqrt{21}\end{cases}}\)
*Với \(2a+3x=x\sqrt{21}\)
\(\Leftrightarrow2x^2+22x+48+3x-x\sqrt{21}=0\)
\(\Leftrightarrow2x^2+x\left(25-\sqrt{21}\right)+48=0\)
Có \(\Delta=262-50\sqrt{21}>0\)
Nên pt có nghiệm \(x=\frac{\sqrt{21}-25\pm\sqrt{262-50\sqrt{21}}}{4}\)
Trường hợp còn lại làm tương tự
Bài 1 :
Mình nghĩ phải sửa đề ntn :
\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)
Vậy....
b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(q=x^2+x+1\)ta có :
\(A=q\left(q+1\right)-12\)
\(A=q^2+q-12\)
\(A=q^2+4q-3q-12\)
\(A=q\left(q+4\right)-3\left(q+4\right)\)
\(A=\left(q+4\right)\left(q-3\right)\)
Thay \(q=x^2+x+1\)ta có :
\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)
\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)
\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)
\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
17. Nửa chu vi miếng đất là: \(48:2=24\left(m\right)\)
Gọi chiều rộng, chiều dài miếng đất ban đầu lần lượt là a (m) và b (m) \(\left(0< a;b< 24\right)\)
Theo bài ra, ta có:
\(\hept{\begin{cases}a+b=24\\\left(a-2\right)\left(b+6\right)-ab=12\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=24\\6a-2b=24\end{cases}}\Leftrightarrow\hept{\begin{cases}a=9\\b=15\end{cases}}\)(thỏa mãn)
Diện tích miếng đất ban đầu là: \(a.b=9.15=135\left(m^2\right)\)
Cho x/a + y/b + z/c = 0 quy dồng ta được xbc + ayc + abz = 0
và a/x + b/y + c/z = 2 bình phương cái thứ hai ta được
a^2/x^2 + b^2/y^2 + c^2/ z^2+ 2 ( (xbc+ ayc+ abz )/ xyz) =4
a^2/x^2 + b^2/y^2+ c^2/ z^2 + 2.( 0/ xyz) =4
=> A= a^2/x^2 + b^2/y^2+ c^2/ z^2 = 4