K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Trl : Thứ 2 

 Chúc bạn hok tốt 

 Bạn tra lịch cũng biết ngày đấy là thứ mấy

24 tháng 2 2020

A B C M D N

a) Xét tam giác AMD và tam giác CMB

có AM=MC (GT)

BM=MD(GT)

Góc AMD=góc CMB (đối đỉnh)

tam giác AMD = tam giác CMB (c.g.c)

b) Chứng minh tương tự tam giác AMB = tam giác CMD (C.G.C)

suy ra góc MAB=góc MCD

mà góc MAB=90 độ

suy ra góc MCD = 90 độ

vậy AC vuông góc với CD tại C

c) Vì BN // AC

mà AC vuông góc với CD tại C

suy ra BN vuông góc với DN

Xét tam giác vuông BNC và tam giác vuông CAB

có BC chung

góc NBC=góc BCA ( so letrong vì BN//AC)

suy ra tam giác  BNC = tam giác CAB (cạnh huyền-góc nhọn)

suy ra AB=CN

Xét tam giác vuông ABM và tam giác vuông CNM

có AB=CN(CMT)

AM=BM (GT)

suy ra tam giác  ABM và tam giác  CNM (C.G.C)

24 tháng 2 2020

Cảm ơn bạn nhiều 

24 tháng 2 2020

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2019}{y}=\frac{x+y-2020}{z}=\frac{y+z+1+x+z+2019+x+y-2020}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow2=\frac{1}{x+y+z}\)\(\Rightarrow x+y+z=\frac{1}{2}\)

Ta có: 

​+) \(\frac{y+z+1}{x}=2\)\(\Rightarrow y+z+1=2x\)\(\Rightarrow x+y+z+1=3x\)\(\Rightarrow\frac{1}{2}+1=3x\)\(\Rightarrow3x=\frac{3}{2}\)\(\Rightarrow x=\frac{1}{2}\)

+) \(\frac{x+z+2019}{y}=2\)\(\Rightarrow x+z+2019=2y\)\(\Rightarrow x+y+z+2019=3y\)\(\Rightarrow\frac{1}{2}+2019=3y\)\(\Rightarrow3y=\frac{4039}{2}\)\(\Rightarrow y=\frac{4039}{6}\)

+) \(\frac{x+y-2020}{z}=2\)\(\Rightarrow x+y-2020=2z\)\(\Rightarrow x+y+z-2020=3z\)\(\Rightarrow\frac{1}{2}-2020=3z\)\(\Rightarrow3z=\frac{-4039}{2}\)\(\Rightarrow z=\frac{-4039}{6}\)

Lại có: \(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{4039}{6}\right)^{2017}+\left(\frac{-4039}{6}\right)^{2017}=4032+\left(\frac{4039}{6}\right)^{2017}-\left(\frac{4039}{6}\right)^{2017}=4032\)

29 tháng 2 2020

A B C H M N

a) Nối AM

Do BA = BM => △ABM cân tại A

=> BAM = BMA 

Ta có: BAM + MAN = 90o => BMA + MAN = 90o

Lại có: MAN + AMN = 90o (△MAN vuông tại N)

=> HMA = NMA

Xét △HMA và △NMA có:

MHA = MNA (= 90o)

AM: chung

HMA = NMA (cmt)

=> △HMA = △NMA (ch-gn)

=> AH = AN (2 cạnh tương ứng)

=> △AHN cân tại A

b) Xét △ABC vuông tại A

=> BC2 = AB2 + AC2 (định lí Pytago)

=> AB2 + AC2 + AH > AB2 + AC2

=> BC + AH > AB + AC

c) Câu này hình như phải là chứng minh 2AC2 - BC2 = CH2 - BH2 chứ nhỉ? Nếu vậy thì cách làm như sau:

Xét △HAC vuông tại H

=> AC2 = HC2 + HA2 (định lí Pytago)

=> HC2 = AC2 - HA2

Xét △BHA vuông tại H

=> AB2 = HB2 + HA2 (định lí Pytago)

=> HB2 = AB2 - HA2

Khi đó:

CH2 - BH2 = AC2 - HA2 - AB2 + HA2

=> CH2 - BH2 = AC2 - AB2

=> CH2 - BH2 = AC2 + AC2 - BC2 (đpcm)

24 tháng 2 2020

Nếu 2 đường thẳng song song cắt một đường thẳng thứ ba thì các tia phân giác của hai góc so le trong song song với nhau
===================
giả sử a//b cắt c tại 2 điểm A và B, d là phân giác góc A, e là phân giác góc B
=> gócA = gócB (so le trong)
=> A1 = B1
mà A1 và B1 là 2 góc so le trong của d và e
=> d//e (đpcm)

Một truong THCS đã thông kê điểm thi học kì I môn Toán của 120 học sinh lớp 7 được ghi lại trong bảng sau:8    6    8    5    10    6    10    8    6    8    5    10 8   8     3    5     7     9     5     9     7   5   6     76   5     6    6     9     5     7    7      9   6    7    85   5     9    7     5     3    6     6       6   6    9    810   6   7   10    6     6     10   6      6    7    7   66     8    5   6     8      5     7     7     10   9   6    77   ...
Đọc tiếp

Một truong THCS đã thông kê điểm thi học kì I môn Toán của 120 học sinh lớp 7 được ghi lại trong bảng sau:

8    6    8    5    10    6    10    8    6    8    5    10 

8   8     3    5     7     9     5     9     7   5   6     7

6   5     6    6     9     5     7    7      9   6    7    8

5   5     9    7     5     3    6     6       6   6    9    8

10   6   7   10    6     6     10   6      6    7    7   6

6     8    5   6     8      5     7     7     10   9   6    7

7    10   8    6    7      6    8     8       6     7   7    8

9     6    6    3    8       7     5   6       9    10   6   10

6     9     7    7   6       5    9     8      6    7     7    6

9     6      5    6   5    6        7    5      6   5     6    5

1. Dấu hiệu ở đây là gì? Số các giá trị khác nhau của dấu hiệu là bao nhiêu?

 2. Lập bảng “Tần số”.

 3. Tính số trung bình cộng và tìm mốt của dấu hiệu.

 4. Vẽ biểu đồ đoạn thẳng biểu diễn chất lượng môn Toán của học sinh khối 7. 

5. Nhận xét chất lượng môn Toán của học sinh khối 7.

0
24 tháng 2 2020

a)Ta xét trong tam giác ABH có Góc H =90độ
=>BAHˆ+ABHˆ=90
mà BAHˆ+HACˆ=90=A^(gt)
=>ABHˆ=HACˆ
Xét tam giác BHA và Tam giác AIC có:
AB=AC(gt)
H^=AICˆ=90(gt)
ABHˆ=HACˆ(c/m trên)
=>Tam giác BHA=Tam giác AIC(cạnh huyền-góc nhọn)
=>BH=AI(hai cạnh tương ứng)
b)Vì Tam giác BHA=Tam giác AIC(c/m trên)
=>IC=AH(hai cạnh tương ứng)
Xét trong tam giác vuông ABH có:
BH2+AH2=AB2
mà IC=AH
=>BH2+IC2=AB2(th này là D nằm giữa B và M)
Ta có thể c/m tiếp rằng D nằm giữa M và C thì ta vẫn c/m được Tam giác BHA=Tam giác AIC(cạnh huyền-góc nhọn) và BH2+IC2=AC2=AB2
=>BH2+CI2 có giá trị ko đổi
c)Ta xét trong tam giác DAC có IC,AM là 2 đường cao và cắt nhau tại N(AM cũng là đường cao do là trung tuyến của tam giác cân xuất phát từ đỉnh và cũng chính là đường cao của đỉnh đó xuống cạnh đáy=>AM vuông góc với DC)
=>DN chính là đường cao còn lại=>DN vuông góc với AC(là cạnh đối diện đỉnh đó)
d)Ta dễ dàng tính được Tam giác DMN cân tại M=>DM=MN(dựa vào số đo của các góc và 1 số c/m trên)
Từ M kẻ đường thẳng ME vuông góc với AD còn MF vuông góc với IC,Ta dễ dàng c/m được tam giác MED=Tam giác MFN(cạnh huyền-góc nhọn)
=>ME=MF(là hai đường vuông góc tại điểm M gióng xuống hai cạnh của góc HICˆ)
Theo tính chất của đường phân giác(Điểm nằm trên đường phân giác của góc này thì cách đều hai cạnh tạo thành góc đó)=>IM là tia phân giác của HICˆ

24 tháng 2 2020

Đang rảnh nên lm linh tinh thử  và kết quả là 

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2k\\y-2=3k\\z-3=4k\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2k+1\\y=3k+2\\z=4k+3\end{cases}}\)

Thay x = 3k + 1 ; y = 3k + 2 và z = 3k + 3 vào 2x + 3y - z = 50 ta có

2. ( 3k + 1 ) + 3 . ( 3k + 2 ) - ( 4k + 3 ) = 50

<=> 6k + 2 + 9k + 6 - 4k - 3 = 50

<=> ( 6k + 9k - 4k ) + ( 2 + 6 - 3 ) = 50

<=> 11k + 5 = 50

<=> 11k = 45 

<=> \(k=\frac{45}{11}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{45}{11}.2+1\\y=\frac{45}{11}.3+2\\z=\frac{45}{11}.4+3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{90}{11}+1=\frac{101}{11}\\y=\frac{135}{11}+2=\frac{157}{11}\\z=\frac{180}{11}+3=\frac{213}{11}\end{cases}}\)

Vậy ....

K thì thôi nhá

@@ Học tốt

24 tháng 2 2020

\(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3\left(x-3\right)+11}{x-3}=\frac{3\left(x-3\right)}{x-3}+\frac{11}{x-3}=3+\frac{11}{x-3}\)

=> x-3 thuộc Ư(11)={-1,-11,1,11}

x-3-1-11111
x2-8414

Vậy....

24 tháng 2 2020

Ta có: \(3x+2=3\left(x-3\right)+11\)

Để 3x+2 chia hết cho x-3 thì 3(x-3) +11 chia hết cho x-3

=> 11 chia hết cho x-3 vì 3(x-3) chia hết cho x-3

Mà x\(\in\)\(\Rightarrow x-3\in Z\)

=> \(x-3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Lập bảng giải tiếp