cho tam giác nhọn ABC.Đường cao BD và CE.Qua D kẻ DF vuông góc với AB tại F.Kẻ EG vuông góc với AC tại G.Chứng minh rằng:
a,AD.AE=AB.AG=AC.AF
b,FG//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)
\(\Leftrightarrow x^2\left(x+5\right)^2-2x\left(x+5\right)=24\)
\(\Leftrightarrow x^2\left(x+5\right)^2-2x\left(x+5\right)=24\)
\(\Leftrightarrow x^4+10x^2+25x^2-2x^2-10x=24\)
\(\Leftrightarrow x^4+10x^3+23x^2-10x=24\)
\(\Leftrightarrow x^4+10x^3+23x^2-10x-24=0\)
\(\Leftrightarrow\left(x^3+11x^2+34x+24\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+10x+24\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+6\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x+4=0\text{ hoặc }x+6=0\text{ hoặc }x-1=0\text{ hoặc }x+1=0\)
\(\Leftrightarrow x=-4\text{ hoặc }x=-6\text{ hoặc }x=\pm1\)
Vậy: nghiệm của phương trình là: x = -4; -6; +-1
b) \(\left(x^3+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow x^5+x^4+2x^3+x^3+x^2+2x+x^2+x+2=12\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x+2=12\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x+2-12=0\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x-10=0\)
\(\Leftrightarrow\left(x^4+2x^3+5x^2+7x+10\right)\left(x-1\right)=0\)
vì: \(x^4+2x^3+5x^2+7x+10\ne0\) nên:
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy: nghiệm của phương trình là: x = 1
*) \(2x+7=0\Rightarrow2x=-7\Rightarrow x=-\frac{7}{2}\)
Tập nghiệm p/t 1 là: \(S=\left\{-\frac{7}{2}\right\}\)
*) \(x^2-2x+11=x^2-4x+14\)
\(\Rightarrow x^2-4x+14-x^2+2x-11=0\)
\(\Rightarrow-2x+3=0\)
\(\Rightarrow-2x=-3\Rightarrow x=\frac{3}{2}\)
Tập nghiêm của p/t 2 là \(S=\left\{\frac{3}{2}\right\}\)
thấy: 2 pt có tập nghiệm khác nhau => 2 pt này ko tương đương nhau
p/s: ko rõ cách trình bày lắm -_- sai bỏ qua nha
\(\left|x^2+x+1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+1=3\\x^2+x+1=-3\end{cases}}\)
+) \(x^2+x+1=3\Rightarrow x^2+x+1-3=0\Rightarrow x^2+2x-x-2=0\Rightarrow\left(x+2\right).\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
+) \(x^2+x+1=-3\Rightarrow x^2+x+4=0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(loai\right)\)
tập nghiệm pt 1 là \(S=\left\{1;-2\right\}\)
\(\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
tập nghiệm pt 2 là \(S=\left\{1;-1\right\}\)
Thấy: 2 pt có tập nghiệm khác nhau => 2 pt này không tương đương
hình đâu bn
ko có hình sao làm đc