K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

Ta có: \(x^2+y^2=\left(x^2+4y^2\right)-3y^2\)

                           \(\ge4xy-3y^2\)

                            \(\ge4xy-3y.\frac{x}{2}\)

                              \(=\frac{5}{2}xy\)

Khi đó \(A=\frac{x^2+y^2}{2017xy}\ge\frac{\frac{5xy}{2}}{2017xy}=\frac{5}{4034}\)

Dấu "=" xảy ra <=> x = 2y

31 tháng 1 2019

Bài này chắc dùng phương pháp hạ bậc + chọn điểm rơi. :v

                         Lời giải:

Dự đoán dấu "=" xảy ra tại a = b = 1

Ta có: \(1+a^2\ge2a;1+b^2\ge2b\) (cô si)

Suy ra \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{1}{2a}+\frac{1}{2b}\) (1)

Áp dụng BĐT Am-Gm (Cô si),ta có: \(ab\le\frac{a^2+b^2}{2}\)

Lại có: \(\frac{2}{1+ab}\ge\frac{2}{1+\frac{a^2+b^2}{2}}\ge\frac{2}{1+\frac{2}{2}}=1\) (2)

Ta sẽ c/m: \(\frac{1}{2a}+\frac{1}{2b}\le1\Leftrightarrow\frac{1}{a}+\frac{1}{b}\le2\)

Chứng minh tiếp đi:v,bí r:v

15 tháng 2 2019

: ở đâu có nhãn xanh thế tth?

31 tháng 1 2019

Từ \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)

\(\Rightarrow\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\)          

                    \(=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)

C/m tương tự cũng có \(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\)

                                    \(\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân 3 vế của các bất đẳng thức trên lại ta được

\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

\(\Rightarrow1\ge8xyz\)

\(\Leftrightarrow xyz\le\frac{1}{8}\)

Dấu "='' khi \(x=y=z=\frac{1}{2}\)

Vậy .......

31 tháng 1 2019

Đây là môn toán mà!

26 tháng 4 2020

Dấu BĐT ngược 1 chút \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

Xét hiệu 2 vế của BĐT

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}=\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\)

\(=\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\ge0\)

=> \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{2}{1+ab}\)

Dấu "=" xảy ra <=> a=b=1

31 tháng 1 2019

a/  ĐKXĐ: \(x\ne3;-3;2\)

\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{3-x}=\frac{x+2}{x+3}-\frac{5}{x^2+3x-2x-6}+\frac{-1}{x-3}=\frac{x+2}{x+3}-\frac{5}{\left(x^2-2x\right)+\left(3-6x\right)}\)

\(+\frac{-1}{x-3}=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}+\frac{-1}{x-3}\)

Đến đây bạn tự quy đồng nhé! Chúc sớm giải được. Cố lên!!!!!