K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

bài 1:hệ đối xứng nên trừ theo vế2 pt

\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-1\right)=0\)

*)Xét x=y (easy)

*)Xét \(x^2+xy+y^2-1=0\) thì \(x^2+y^2+xy=1\)

Từ \(pt\left(1\right)\Rightarrow y=2-x^3\) thay vào có:

\(x^6-x^4-4x^3+x^2+2x+3=0\)

\(\Leftrightarrow\left(x^3-x-1\right)^2+\left(x^2-x-\frac{3}{4}\right)^2+\frac{\left(2x-3\right)^2}{8}+\frac{5}{16}>0\)

vô nghiệm

động não nghĩ thôi,sắp ra rồi,ối lại quên rồi,a,sắp ra rồi!Huhu,lại quên rồi.........

11 tháng 6 2017

câu trả lời là không nhé.. ta có thể chứng minh: 

Giả sử :  A,B là 2 số chính phương... \(\sqrt{A}=a\)

\(\sqrt{B}=b\) c là số không chính phương.

tích  A.B.c.......... \(\sqrt{A.Bc}=a.b\sqrt{c}\)mà c ko là số chính phương suy ra tích 3 số này ko là số chính phương nha

11 tháng 6 2017

Câu 1: a,b > 1. chứng minh: a^2 /(b-1) + b^2/ (a-1) >=8?

11 tháng 6 2017

Thanks!!kết bạn nha!!

11 tháng 6 2017

mk nè!

11 tháng 6 2017

xem lại đề câu 1đi nhé 

11 tháng 6 2017

b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)

c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)

\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

11 tháng 6 2017

12 +  6 = 18

11 tháng 6 2017

12+6=18