K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

Mình xin làm bài nhé ;) 
xy-4yz-zx>=-1008 <=> 2xy-8yz-2zx+2016 >= 0 
<=> 2xy - 8yz-2zx+x^2+2y^2+10z^2  >=0 <=> (x+y-z)^2 +(y-3z)^2 >=0  ( Luôn đúng=> ĐPCM) 
P/s: huh? #HoàngPhúc Thành phố Vũng Tàu vậy biết ai tên Nguyễn Thành Trung khÔng :) ?

14 tháng 6 2017

1, Có : \(1^{2017}+2^{2017}+...+10^{2017}⋮5\Rightarrow1^{2017}+...+2010^{2017}⋮5\)

\(2011^{2017}+...+2018^{2017}\)chia 5 dư 1, suy ra S chia 5 dư 1.

2, chưa bít làm

3, thay vào p=3, q=2 xong biện luận để cm có 1 cặp số (p;q) duy nhất.

KẾT LUẬN: KHOA BẢNG tuổi gì????

14 tháng 6 2017

Gọi A= \(\frac{a-b}{c}\)+  \(\frac{b-c}{a}\)+  \(\frac{c-a}{b}\), ta có:

A*\(\frac{c}{a-b}\)= 1+\(\frac{c}{a-b}\)(\(\frac{b-c}{a}\)+\(\frac{c-a}{b}\))

= 1+ \(\frac{c}{a-b}\)\(\frac{b^2-bc+ac-a^2}{ab}\)=  1 +\(\frac{c}{a-b}\)*\(\frac{\left(a-b\right)\left(c-a-b\right)}{ab}\)=  1+\(\frac{2c^2}{ab}\)=  1-+\(\frac{2c^3}{abc}\)

Tương tụ A* \(\frac{a}{b-c}\)= 1+\(\frac{2a^3}{abc}\)

               A*\(\frac{b}{c-a}\)=  1+ \(\frac{2b^3}{abc}\)

Vậy S =  3 +\(\frac{2\left(a^3+b^3+c^3\right)}{abc}\)= 9  

ở phần a3 + b3 + c3 thì tổng đấy sẽ bằng 3abc , đoạn đấy mk làm tắt nhé, bạn tự thay vào hehe

15 tháng 6 2017

cảm ơn nhiều!!!

14 tháng 6 2017

Có :

( 1 - a ) ( 1 - b ) ( 1 - c ) ≥ 0 ( do a,b,c thuộc [0;1] )

\(\Leftrightarrow\)1 - a - b - c +ab + bc + ca- abc ≥ 0

\(\Leftrightarrow\) a + b + c - ab - bc -ca \(\le\) 1 - abc

Do a,b,c thuộc [0;1] nên b2\(\le\)b; c3 \(\le\)c và abc \(\le\) 1

Suy ra 1\(\ge\)1 - abc \(\ge\) a + b + c -ab - bc - ca  \(\ge\)a + b2 + c3 -ab - bc - ca

Dấu bằng xảy ra khi 2 số bằng 0, 1 số bằng 1. ( tự thay )

14 tháng 6 2017

Vì a, b, c thuộc đoạn (0,1) nên 1- a, 1 - b, 1 - c \(\ge\)0.

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Rightarrow1-a-b-c+ab+bc+ca-abc\ge0\)

\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\le1\left(đpcm\right)\)

Dấu bằng xảy ra khi có 1 số bằng 1, 2 số còn lại bằng 0

14 tháng 6 2017

À thêm nx b<b^2, c<c^3 vì thuộc  (0,1). Thay vào kết quả trên ta có đpcm

14 tháng 6 2017

2n3 + n2 + 7n + 1 chia hết cho 2n - 1

2n3 - n2 + 2n2 + 7n + 1 chia hết cho 2n - 1

n2.(2n - 1) + 2n2 + 7n + 1 chia hết cho 2n - 1

=> 2n2 + 7n + 1 chia hết cho 2n - 1

2n2 - n + 8n + 1 chia hết ch 2n - 1

n(2n - 1) + 8n + 1 chia hết cho 2n - 1

8n + 1 chia hết cho 2n - 1

8n - 4 + 5 chia hết cho 2n - 1

4.(2n - 1) + 5 chia hết cho 2n - 1

=> 5 chia hết cho 2n - 1

=> 2n - 1 thuộc Ư(5) = {1 ; -1; 5; -5}

Ta có bảng sau :

2n - 11-15-5
n103-2
15 tháng 2 2020

Trl

-Bạn kia làm đúng rồi !~

Học tốt 

nhé bạn :>

15 tháng 6 2017

Bài này tìm min chứ max có đâu mà tìm

\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)

\(=8x^4-64x^3+192x^2-256x+136\)

\(=\left(8x^4-64x^3+128x^2\right)+\left(64x^2-256x\right)+136\)

\(=8\left(x^2-4x\right)^2+64\left(x^2-4x\right)+136\)

\(=8\left(x-2\right)^4+8\ge8\)

Dấu = xảy ra khi \(x=2\)

14 tháng 6 2017

x4-30x2+31x-30=0

 x4+x) -30x2+30x-30=0

x{x3+1} -30{ x2-x+1}=0

x{x+1}{x2-x+1}-30{x2-x+1}=0

{x2-x+1}{x2+x-30}=0

x2+x-30=0 {vi x2-x+1>0}

x2+x-30x-30=0

{x+1}{x-30}=0

  • x=-1
  • x=30
14 tháng 6 2017

với a > 0 và a khác 0. Ta có :

       \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)

\(\Leftrightarrow\)\(\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)

\(\Leftrightarrow\)\(\frac{\sqrt{a}\left(1-a\right)\left(1-a\right)}{1-\sqrt{a}}.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}=1\)

\(\Leftrightarrow\)\(\frac{\left(1-a\right)\left(1+\sqrt{a}\right).\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}=1\)

\(\Leftrightarrow\)\(\frac{\left(1-a\right)\left(1-a\right)}{\left(1-a\right)^2}=1\)

năm nay em lên lớp 9 anh xem xét bài em nha!!! ^.^

Dùng tính chất phân phối 

Tách  vế trái ra rồi chứng minh :

Tổng vế trái bằng 1 

Với a lớn hơn hoặc bằng 0 ; a khác 1 đó là điều kiện để phân thức tồn tại thôi