Cho đường tròn (O;R) và điểm A cố định nằm bên ngoài đường tròn. Một đường thẳng (d) bất kì đi qua A, cắt đường tròn (O;R) tại B, C.
Tìm vị trí của (d) để AB+AC có giá trị:
1. Lớn nhất ?
2. Nhỏ nhất ?
A B C O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình xin làm bài nhé ;)
xy-4yz-zx>=-1008 <=> 2xy-8yz-2zx+2016 >= 0
<=> 2xy - 8yz-2zx+x^2+2y^2+10z^2 >=0 <=> (x+y-z)^2 +(y-3z)^2 >=0 ( Luôn đúng=> ĐPCM)
P/s: huh? #HoàngPhúc Thành phố Vũng Tàu vậy biết ai tên Nguyễn Thành Trung khÔng :) ?
1, Có : \(1^{2017}+2^{2017}+...+10^{2017}⋮5\Rightarrow1^{2017}+...+2010^{2017}⋮5\)
Mà\(2011^{2017}+...+2018^{2017}\)chia 5 dư 1, suy ra S chia 5 dư 1.
2, chưa bít làm
3, thay vào p=3, q=2 xong biện luận để cm có 1 cặp số (p;q) duy nhất.
KẾT LUẬN: KHOA BẢNG tuổi gì????
Gọi A= \(\frac{a-b}{c}\)+ \(\frac{b-c}{a}\)+ \(\frac{c-a}{b}\), ta có:
A*\(\frac{c}{a-b}\)= 1+\(\frac{c}{a-b}\)(\(\frac{b-c}{a}\)+\(\frac{c-a}{b}\))
= 1+ \(\frac{c}{a-b}\)* \(\frac{b^2-bc+ac-a^2}{ab}\)= 1 +\(\frac{c}{a-b}\)*\(\frac{\left(a-b\right)\left(c-a-b\right)}{ab}\)= 1+\(\frac{2c^2}{ab}\)= 1-+\(\frac{2c^3}{abc}\)
Tương tụ A* \(\frac{a}{b-c}\)= 1+\(\frac{2a^3}{abc}\)
A*\(\frac{b}{c-a}\)= 1+ \(\frac{2b^3}{abc}\)
Vậy S = 3 +\(\frac{2\left(a^3+b^3+c^3\right)}{abc}\)= 9
ở phần a3 + b3 + c3 thì tổng đấy sẽ bằng 3abc , đoạn đấy mk làm tắt nhé, bạn tự thay vào hehe
Có :
( 1 - a ) ( 1 - b ) ( 1 - c ) ≥ 0 ( do a,b,c thuộc [0;1] )
\(\Leftrightarrow\)1 - a - b - c +ab + bc + ca- abc ≥ 0
\(\Leftrightarrow\) a + b + c - ab - bc -ca \(\le\) 1 - abc
Do a,b,c thuộc [0;1] nên b2\(\le\)b; c3 \(\le\)c và abc \(\le\) 1
Suy ra 1\(\ge\)1 - abc \(\ge\) a + b + c -ab - bc - ca \(\ge\)a + b2 + c3 -ab - bc - ca
Dấu bằng xảy ra khi 2 số bằng 0, 1 số bằng 1. ( tự thay )
Vì a, b, c thuộc đoạn (0,1) nên 1- a, 1 - b, 1 - c \(\ge\)0.
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Rightarrow1-a-b-c+ab+bc+ca-abc\ge0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\le1\left(đpcm\right)\)
Dấu bằng xảy ra khi có 1 số bằng 1, 2 số còn lại bằng 0
À thêm nx b<b^2, c<c^3 vì thuộc (0,1). Thay vào kết quả trên ta có đpcm
2n3 + n2 + 7n + 1 chia hết cho 2n - 1
2n3 - n2 + 2n2 + 7n + 1 chia hết cho 2n - 1
n2.(2n - 1) + 2n2 + 7n + 1 chia hết cho 2n - 1
=> 2n2 + 7n + 1 chia hết cho 2n - 1
2n2 - n + 8n + 1 chia hết ch 2n - 1
n(2n - 1) + 8n + 1 chia hết cho 2n - 1
8n + 1 chia hết cho 2n - 1
8n - 4 + 5 chia hết cho 2n - 1
4.(2n - 1) + 5 chia hết cho 2n - 1
=> 5 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(5) = {1 ; -1; 5; -5}
Ta có bảng sau :
2n - 1 | 1 | -1 | 5 | -5 |
n | 1 | 0 | 3 | -2 |
Bài này tìm min chứ max có đâu mà tìm
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
\(=8x^4-64x^3+192x^2-256x+136\)
\(=\left(8x^4-64x^3+128x^2\right)+\left(64x^2-256x\right)+136\)
\(=8\left(x^2-4x\right)^2+64\left(x^2-4x\right)+136\)
\(=8\left(x-2\right)^4+8\ge8\)
Dấu = xảy ra khi \(x=2\)
x4-30x2+31x-30=0
x4+x) -30x2+30x-30=0
x{x3+1} -30{ x2-x+1}=0
x{x+1}{x2-x+1}-30{x2-x+1}=0
{x2-x+1}{x2+x-30}=0
x2+x-30=0 {vi x2-x+1>0}
x2+x-30x-30=0
{x+1}{x-30}=0
với a > 0 và a khác 0. Ta có :
\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)
\(\Leftrightarrow\)\(\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)
\(\Leftrightarrow\)\(\frac{\sqrt{a}\left(1-a\right)\left(1-a\right)}{1-\sqrt{a}}.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}=1\)
\(\Leftrightarrow\)\(\frac{\left(1-a\right)\left(1+\sqrt{a}\right).\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}=1\)
\(\Leftrightarrow\)\(\frac{\left(1-a\right)\left(1-a\right)}{\left(1-a\right)^2}=1\)
năm nay em lên lớp 9 anh xem xét bài em nha!!! ^.^
Dùng tính chất phân phối
Tách vế trái ra rồi chứng minh :
Tổng vế trái bằng 1
Với a lớn hơn hoặc bằng 0 ; a khác 1 đó là điều kiện để phân thức tồn tại thôi