có ai chơi lp k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
mình quên rồi có gì các bạn chỉ dùm
A=1.2+2.3+3.4+...+n.(n+1)=[n.(n+1).(n+2)]:3
B=1.2.3+2.3.4+...+(n-1).n.(n+1)=[(n-1).n.(n+1).(n+2)]:4
easy như 1 trò đùa
b.
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)-8abc\ge0\)
\(\Leftrightarrow a^2b+ac^2+a^2c+b^2c+b^2a+bc^2-6abc\ge0\)
\(\Leftrightarrow a\left(b^2-2bc+c^2\right)+b\left(c^2-2ca+a^2\right)+c\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)(luôn đúng)
dấu "=" xảy ra khi a=b=c.
Ối chết,thiếu :v. Chứng minh hai biểu thức trên \(\ge0\) nha!
Thanks zZz Cool Kid zZz best toán :v đã nhắc nhở!
#)Bài này mk biết vẽ vs lại làm nek !
Mk sẽ cho bn link bài làm chụp từ word : file:///D:/Van%20Ban/Downloads/1519470315_1491468758_6.jpg
Đúng lun ^^
๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ): Link đó không vào được nhé! Link đó xuất phát từ ổ D máy tính bạn (hình như vậy,nhìn cái chữ file:///D: thấy giống lắm nên nó thuộc quyền sở hữu cá nhân của máy bạn. Do đó bạn đưa link này là vô ích và nó giống như spam vậy đó.
#)Giải :
Trong 12 số sẽ có 9 số lớn hơn 5
=> Luôn chia cho 3 dư 1 hoặc dư 2
Vậy trong 12 số luôn tồn tại a1 - a2 sao cho a1 - a2 chia hết cho 2
Và a3 - a4 : a5 - a6 sao cho a3 - a4 ; a5 - a6 chia hết cho 30
Do đó tích trên chia hết cho 2 . 30 . 30 = 1800
* Nguồn : Câu hỏi tương tự
Mk ghi cho bn đỡ ph vô đó thui :P
#~Will~be~Pens~#
Ta đã biết 3 số nguyên tố đầu tiên trong tập số nguyên tố là: 2, 3, 5
Do đó trong 12 số nguyên tố phân biệt bất kì luôn có ít nhất 9 số lớn hơn 5 và 9 số trên chia cho 3 dư 1 , 2.
=> Theo nguyên lí Dirichlet, tồn tại ít nhất 5 số nguyên tố đồng dư với nhau theo mod 3 ( nghĩa là tồn tại ít nhất 5 số có cùng số dư khi chia cho 3), 5 số trên không chia hết cho 5
=> Trong 5 số trên có ít nhất 2 số giả sử là a1 và a2 có cùng số dư khi chia cho 5 hay \(a_1\equiv a_2\left(mod5\right)\)
Và \(a_1\equiv a_2\left(mod3\right)\)
a1, a2 lẻ => \(a_1\equiv a_2\left(mod2\right)\)
mà (5, 2, 3) =1
=> \(a_1\equiv a_2\left(mod30\right)\Leftrightarrow a_1-a_2⋮30\)
Xét 7 số trong 9 số còn lại:
Theo nguyên lí Dirichlet tồn tại 4 đồng dư với nhau theo mod 3, Xét 4 số trên khi chia cho 5
TH1: tồn tại hai số a3, a4 sao cho : \(a_3\equiv a_4\left(mod5\right)\)
mặt khác tương tự như trên ta cũng có \(a_3\equiv a_4\left(mod30\right)\Leftrightarrow a_3-a_4⋮30\)
Lấy hai số bất kì a5, a6 trong 5 số còn lại, ta có: \(a_5+a_6⋮2\)
và 2.30.30=1800
Vậy \(\left(a_1-a_2\right)\left(a_3-a_4\right)\left(a_5+a_6\right)⋮1800\)
TH2: 4 số trên khi chia cho 5 có số dư lần lượt là 1, 2, 3, 4
G/s: \(a_5\equiv1\left(mod5\right);a_6\equiv4\left(mod5\right)\Rightarrow a_5+a_6\equiv5\left(mod5\right)\Rightarrow a_5+a_6⋮5\)
và a5, a6 lẻ \(\Rightarrow a_5+a_6⋮2\)
\(\Rightarrow a_5+a_6⋮10\)
Mặt khác : lấy hai số a3, a4 còn lại ta có: \(a_3\equiv a_4\left(mod3\right)\Rightarrow a_3-a_4⋮3\)
và a3, a4 lẻ => \(a_3-a_4⋮2\)
=> \(a_3-a_4⋮6\)
Ta có: 30.10.6=1800
vậy \(\left(a_1-a_2\right)\left(a_3-a_4\right)\left(a_5+a_6\right)⋮1800\)
\(=\left(-\frac{2}{3}+\frac{3}{7}\right).\frac{5}{4}+\left(-\frac{1}{3}+\frac{4}{7}\right).\frac{5}{4}\)
\(=\frac{5}{4}\left(-\frac{2}{3}+\frac{3}{7}+-\frac{1}{3}+\frac{4}{7}\right)\)
\(=\frac{5}{4}\left(1+-1\right)=0\)
Bn trả lời và đc ng khác tk điểm .
Nếu điểm SP của ng đó trên 11 SP thì sẽ lên điểm
~ Học tốt ~
Đừng đăng linh tinh nx nhé
Nhớ t.i.c.k !! #Vii
nếu bn đc người nào đó trên 11sp k đúng cho bn bn sẽ có điểm sp nhé.chúc bn có thật nhìu sp nhó
\(f_{\left(x\right)}=x^6-2002x^5+2002x^4-2002x^3+2002x^2-2002x+2006\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+5\)
\(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+5\)
\(=5\)
Vậy \(f_{\left(x\right)}=5\)Tại x = 2001
Lạ OLM ghê làm sai mà vẫn được k ???
Ta có : x=2001 \(\Rightarrow\)x+1=2002
\(F\left(x\right)=x^6-\left(x-1\right).x^5+\left(x-1\right).x^4-\left(x-1\right).x^3+\left(x-1\right).x^2-\left(x-1\right).x+2006\)
\(F\left(x\right)=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2006\)
\(F\left(2001\right)=-2001+2006=5\)
mik ko chơi
KO
ĐĂNG
CÂU
HỎI
LINH
TINH
#study well#
trả lời
mik ko chơi,mik cx ko bk lp là j nx lun
học tốt,k mik nha