K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+x^2+2x+1=0\)

\(\Leftrightarrow\frac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\frac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)

Dễ thấy: \(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+14}+3}+1>0\)

Nên (x+1)2=0 =>x+1=0 =>x=-1

17 tháng 6 2017

đề đâu

 

 

0
17 tháng 6 2017

Vì x, y, z là số tự nhiên nên không mất tính tổng quát ta giả sử:

\(x\ge y\ge z\ge0\)

\(\Rightarrow x=2017-y-z\ge2017-0-0=2017\)

Vậy GTLN là 2017 đạt được khi \(\hept{\begin{cases}x=2017\\y=z=0\end{cases}}\) và các hoán vị của nó

17 tháng 6 2017

Ở trên a ghi nhầm dấu \(\le\) thành dấu \(\ge\) e sửa hộ a nhé

17 tháng 6 2017

\(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)

\(=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ca}+\sqrt{c\left(a+b+c\right)+ab}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)

\(\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)

\(=2\left(a+b+c\right)=4\)

Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)

17 tháng 6 2017

cái này mà toán lớp 9 , lớp 8 mình hc rồi nè !!11

17 tháng 6 2017

đặt  b+c-a=x, a+c-b=y,a+b-c=z\(\Rightarrow x+y=2c,y+z=2a,x+z=2b\)

pt trở thành \(\frac{y+z}{x}+\frac{x+z}{y}+\frac{y+x}{z}=\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\) \(\ge2+2+2=6\)

                                     dau = xay ra\(\Leftrightarrow x=y=zhaya=b=c\)

17 tháng 6 2017

\(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{b+a-c}\)

\(=\frac{2a^2}{ab+ac-a^2}+\frac{2b^2}{bc+ba-b^2}+\frac{2c^2}{cb+ca-c^2}\)

\(\ge\frac{2\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-a^2-b^2-c^2}\)

\(\ge\frac{2\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+a^2+b^2+c^2-a^2-b^2-c^2}=6\)

Dấu = xảy ra khi \(a=b=c\)

17 tháng 6 2017

\(a.\sqrt{2}\cdot\sqrt{7-\sqrt{6}}\)

\(=\sqrt{2\cdot\left(7-\sqrt{6}\right)}\)

\(=\sqrt{14-2\cdot\sqrt{6}}\)

b) \(\sqrt{5-2\cdot\sqrt{6}}-\sqrt{5+2\cdot\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}-\sqrt{3}+\sqrt{2}\)( VÌ \(\sqrt{3}>\sqrt{2}>0\))

\(=0\)

Mình làm hơi tắt nha !!

17 tháng 6 2017

mk k bt

17 tháng 6 2017

1 / xét tam giác ABH đồng dạng  vs CAH trg hợp g-g suy ra AB/AC =BH/AH 

                                                                                <=> 3 /7 =BH /42 

                                                                                           => BH =18 cm 

2 áp dụng hệ thức lượng AH^2 =BH .CH từ bh/ch =9/16 =>CH= 16BH/9 

TA CÓ AH ^2 =16BH^2 /9 SUY RA BH =36 cm SUY RA CH = 64 cm áp dụng pita go suy ra AB ,AC hoặc hệ thức lg cũng đc