Tìm các số nguyên x để x + 4/x - 2 + 2x -5/x - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(b=\dfrac{2n+2}{n+2}+\dfrac{5n+17}{n+2}-\dfrac{3n}{n-2}\)
\(b=\dfrac{7n+19}{n+2}-\dfrac{3n}{n-2}\)
\(b=\dfrac{7\left(n+2\right)+5}{n+2}-\dfrac{3\left(n-2\right)+6}{n-2}\)
\(b=7+\dfrac{5}{n+2}-3-\dfrac{6}{n-2}\)
để b là STN thì \(\left\{{}\begin{matrix}n+2\inƯ\left(5\right)\\n-2\inƯ\left(6\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n+2\in\left\{1;5\right\}\\n-2\in\left\{1;2;3;6\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n\in\left\{-1;3\right\}\\n\in\left\{3;4;5;8\right\}\end{matrix}\right.\) => n = 3 thỏa mãn
vậy n=3
![](https://rs.olm.vn/images/avt/0.png?1311)
Dời dấu phẩy sang bên trái 1 hàng ta được số mới bằng \(\dfrac{1}{10}\) số cũ
Hiệu số phần bằng nhau là: \(10-1=9\)
Số cũ là:
\(10\times40,68:9=45,2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1^2+2^2+3^2+...+n^2=\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+n\left[\left(n+1\right)-1\right]=\)
\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n=\)
\(=\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]-\left(1+2+3+...+n\right)=\)
Đặt
\(B=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(\Rightarrow3B=1.2.3+2.3.3++3.4.3+n\left(n+1\right).3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)=\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow B=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}-\dfrac{n\left(n+1\right)}{2}\) Là 1 đa thức bậc 3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(\Rightarrow\dfrac{1}{2}S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{101}}\)
trừ vế ta được :
\(S-\dfrac{1}{2}S=\dfrac{1}{2}-\dfrac{1}{2^{101}}\)
\(\Rightarrow\dfrac{1}{2}S=\dfrac{1}{2}-\dfrac{1}{2^{101}}\)
\(\Rightarrow S=2\cdot\left(\dfrac{1}{2}-\dfrac{1}{2^{101}}\right)\)
\(\Rightarrow S=1-\dfrac{1}{2^{100}}< 1\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
S=3+3^2+3^3+...+3^2022
3S=3.(3+3^2+3^3+...+3^2022)
3S=3^2+3^3+3^4+...+3^2023
⇒3S-S=(3^2+3^3+3^4+...+3^2023)-(3+3^2+3^3+...+3^2022)
⇒2S=3^2023-3
⇒S=3^2023-3 / 2
S=3+3^2+3^3+...+3^2022
=>3S=3^2+3^3+3^4+...+3^2023
=>3S-S=(3^2+3^3+3^4+...+3^2023)-(3+3^2+3^3+...+3^2022)
=>2S=3^2023-3
=>S=\(\dfrac{3^{2023}-3}{2}\)
Vậy S=\(\dfrac{3^{2023}-3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
$S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}$
$2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{49}}$
$\Rightarrow 2S-S=1-\frac{1}{2^{50}}$
$\Rightarrow S=1-\frac{1}{2^{50}}$
b.
$S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{20}}$
$3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{19}}$
$\Rightarrow 3S-S=1-\frac{1}{3^{20}}$
$\Rightarrow 2A=1-\frac{1}{3^{20}}$
$\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{20}}$
thiếu đề bài bạn ơi
Ghi lại đề nhé:Tìm các số nguyên x để x + 4/x - 2 + 2x - 5/x - 2 là một số nguyên