K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3

''cục cứt con chó này''

Nếu em là anh Quang, em sẽ từ chối lời đề nghị này và yêu cầu nhận hóa đơn. Việc này không chỉ giúp anh Quang có bằng chứng mua hàng mà còn là trách nhiệm của người tiêu dùng trong việc chống chối trốn thuế. Mặc dù việc giảm giá 20% có thể giúp tiết kiệm một số tiền, nhưng việc làm đúng luật pháp và thực hiện trách nhiệm công dân là quan trọng hơn.

2 tháng 3

 Chỗ kia phải là \(\dfrac{c^4}{b+a+4ba}\) chứ nhỉ? Nếu đúng đề thì bạn nói với mình để mình làm lại nhé. Giờ mình làm theo đề đối xứng trước nhé.

 Ta có:

\(P=\dfrac{a^6}{a^2b+a^2c+4a^2bc}+\dfrac{b^6}{b^2a+b^2c+4b^2ca}+\dfrac{c^6}{c^2a+c^2b+4c^2ab}\)

\(\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{a^2b+b^2c+c^2a+ab^2+bc^2+ca^2+4a^2bc+4b^2ca+4c^2ab}\)

\(=\dfrac{9}{\left(a+b+c\right)\left(ab+bc+ca\right)+abc\left(4\left(a+b+c\right)-3\right)}\)

Ta có \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)

và \(abc\le\dfrac{a^3+b^3+c^3}{3}=1\), đồng thời \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)>\dfrac{27}{64}\)

\(\Leftrightarrow a+b+c>\dfrac{3}{4}\) \(\Leftrightarrow4\left(a+b+c\right)-3>0\). Do đó \(abc\left(4\left(a+b+c\right)-3\right)\le4\left(a+b+c\right)-3\)

 Vì vậy \(P\ge\dfrac{9}{\dfrac{\left(a+b+c\right)^3}{3}+4\left(a+b+c\right)-3}\)

 Đặt \(a+b+c=t\)

 Ta có \(a^3+b^3\ge ab\left(a+b\right)=a^2b+b^2a\). Lập 2 BĐT tương tự rồi cộng theo vế, ta có:

 \(2\left(a^3+b^3+c^3\right)\ge a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

 \(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le6+2abc\le8\) (vì \(abc\le1\))

 Do đó \(t^3=3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\le3+3.8=27\) \(\Leftrightarrow t\le3\)

 Vậy \(0< t\le3\)

 Ta có \(P\ge\dfrac{9}{\dfrac{t^3}{3}+4t-3}\) \(\ge\dfrac{9}{\dfrac{3^3}{3}+4.3-3}=\dfrac{1}{2}\)

 Dấu "=" xảy ra khi \(a=b=c=1\)

 Vậy GTNN của P là \(\dfrac{1}{2}\) khi \(a=b=c=1\)

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4m\right)\)

\(=4\left(m^2-2m+1\right)+16m\)

\(=4m^2+8m+4=\left(2m+2\right)^2>=0\forall m\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>(2m+2)^2>0

=>\(2m+2\ne0\)

=>\(2m\ne-2\)

=>\(m\ne-1\)

Theo vi-et, ta có:

\(x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right);x_2x_1=-4m\)

\(\left|x_1-x_2\right|=2022\)

=>\(\sqrt{\left(x_1-x_2\right)^2}=2022\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2022\)

=>\(\sqrt{\left(2m-2\right)^2-4\cdot\left(-4m\right)}=2022\)

=>\(\sqrt{\left(2m+2\right)^2}=2022\)

=>\(\left|2m+2\right|=2022\)

=>|m+1|=1011

=>\(\left[{}\begin{matrix}m+1=1011\\m+1=-1011\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1010\left(nhận\right)\\m=-1012\left(nhận\right)\end{matrix}\right.\)

\(\left[sin^3a+sina\cdot sin^2\left(90-a\right)\right]:\left[sina-4\cdot cos\left(90-a\right)\right]\)

\(=\left[sin^3a+sina\cdot cos^2a\right]:\left[sina-4\cdot sina\right]\)

\(=\dfrac{sina\left(sin^2a+cos^2a\right)}{-3\cdot sina}=\dfrac{1}{-3}=-\dfrac{1}{3}\)

\(A=\dfrac{\sqrt{4+\sqrt{15}}-\sqrt{2-\sqrt{3}}+\sqrt{10}}{\sqrt{69+9\sqrt{5}}}\)

\(=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{4-2\sqrt{3}}+2\sqrt{5}}{\sqrt{138+18\sqrt{5}}}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{3}+1+2\sqrt{5}}{\sqrt{135+2\cdot3\sqrt{15}\cdot\sqrt{3}+3}}\)

\(=\dfrac{3\sqrt{5}+1}{\sqrt{\left(3\sqrt{15}+\sqrt{3}\right)^2}}=\dfrac{3\sqrt{5}+1}{3\sqrt{15}+\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{3}}\)

28 tháng 2

pt đã cho \(\Leftrightarrow x^2-\left(y+1\right)x-2y^2+5y-6=0\) (*)

Ta tính được \(\Delta=9y^2-18y+25>0\) với mọi y.

Để (*) có nghiệm nguyên thì \(9y^2-18y+25\) là số chính phương

\(\Leftrightarrow9y^2-18y+25=z^2\left(z\inℕ,z\ge4\right)\)

\(\Leftrightarrow\left(3y-3\right)^2+16=z^2\)

\(\Leftrightarrow\left(z+3y-3\right)\left(z-3y+3\right)=16\)

Ta có bảng sau:

\(z+3y-3\) 1 -1 16 -16 2 8 -2 -8 4 -4
\(z-3y+3\) 16 -16 1 -1 -8 -2 8 2 4 -4
\(z\) \(\dfrac{17}{2}\)(l) -8 8 \(-\dfrac{11}{2}\)(l) -3 3 3 -3 4 -4
\(y\)   \(\dfrac{10}{3}\)(l) \(\dfrac{10}{3}\)(l)   \(\dfrac{8}{3}\)(l) \(\dfrac{8}{3}\)(l) \(-\dfrac{2}{3}\) \(-\dfrac{2}{3}\)(l) 1 1
                     

Vậy \(y=1\) \(\Rightarrow x^2-2x-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

Vậy pt đã cho có các nghiệm nguyên là \(\left(-1;1\right)\) và \(\left(3;1\right)\)

 

28 tháng 2

b) Do BD//AC nên \(\widehat{KAI}=\widehat{KDB}\) (2 góc so le trong)

 Lại có \(\widehat{ABI}=\widehat{ABK}=\widehat{BDK}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung BK.

 \(\Rightarrow\widehat{KAI}=\widehat{KBA}\)

c) I là trung điểm AC chứ không phải BC nhé.

 Xét tam giác IAK và IBA, ta có:

 \(\widehat{AIB}\) chung, \(\widehat{IAK}=\widehat{IBA}\left(cmt\right)\) 

 \(\Rightarrow\Delta IAK\sim\Delta IBA\left(g.g\right)\)

 \(\Rightarrow\dfrac{IA}{IB}=\dfrac{IK}{IA}\)

 \(\Rightarrow IA^2=IB.IK\)

 \(\Rightarrow IA=IC\) (vì theo câu a, \(IC^2=IB.IK\))

 \(\Rightarrow\) I là trung điểm AC.

d) CK vuông góc với đường nào trong đề bài chưa nói nhé.